// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team and * * FNAL LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for class CylindricalEta3D // // Created by: Lorenzo Moneta at Mon May 30 11:58:46 2005 // Major revamp: M. Fischler at Fri Jun 10 2005 // // Last update: $Id$ // #ifndef ROOT_Math_GenVector_CylindricalEta3D #define ROOT_Math_GenVector_CylindricalEta3D 1 #ifndef ROOT_Math_Math #include "Math/Math.h" #endif #ifndef ROOT_Math_GenVector_etaMax #include "Math/GenVector/etaMax.h" #endif #include #include "Math/Math.h" namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Class describing a cylindrical coordinate system based on eta (pseudorapidity) instead of z. The base coordinates are rho (transverse component) , eta and phi Phi is restricted to be in the range [-PI,PI) @ingroup GenVector */ template class CylindricalEta3D { public : typedef T Scalar; /** Default constructor with rho=eta=phi=0 */ CylindricalEta3D() : fRho(0), fEta(0), fPhi(0) { } /** Construct from rho eta and phi values */ CylindricalEta3D(Scalar rho, Scalar eta, Scalar phi) : fRho(rho), fEta(eta), fPhi(phi) { Restrict(); } /** Construct from any Vector or coordinate system implementing Rho(), Eta() and Phi() */ template explicit CylindricalEta3D( const CoordSystem & v ) : fRho(v.Rho() ), fEta(v.Eta() ), fPhi(v.Phi() ) { static Scalar bigEta = -.3f *std::log(std::numeric_limits::epsilon()); if ( std::fabs(fEta) > bigEta ) { fRho *= v.Z()/Z(); // This gives a small absolute adjustment in rho, // which, for large eta, results in a significant // improvement in the faithfullness of reproducing z. } } // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower // re-implement them ( there is no no need to have them with g++4) /** copy constructor */ CylindricalEta3D(const CylindricalEta3D & v) : fRho(v.Rho() ), fEta(v.Eta() ), fPhi(v.Phi() ) { } /** assignment operator */ CylindricalEta3D & operator= (const CylindricalEta3D & v) { fRho = v.Rho(); fEta = v.Eta(); fPhi = v.Phi(); return *this; } /** Set internal data based on an array of 3 Scalar numbers */ void SetCoordinates( const Scalar src[] ) { fRho=src[0]; fEta=src[1]; fPhi=src[2]; Restrict(); } /** get internal data into an array of 3 Scalar numbers */ void GetCoordinates( Scalar dest[] ) const { dest[0] = fRho; dest[1] = fEta; dest[2] = fPhi; } /** Set internal data based on 3 Scalar numbers */ void SetCoordinates(Scalar rho, Scalar eta, Scalar phi) { fRho=rho; fEta=eta; fPhi=phi; Restrict(); } /** get internal data into 3 Scalar numbers */ void GetCoordinates(Scalar& rho, Scalar& eta, Scalar& phi) const {rho=fRho; eta=fEta; phi=fPhi;} private: inline static Scalar pi() { return M_PI; } inline void Restrict() { if ( fPhi <= -pi() || fPhi > pi() ) fPhi = fPhi - std::floor( fPhi/(2*pi()) +.5 ) * 2*pi(); return; } public: // accessors T Rho() const { return fRho; } T Eta() const { return fEta; } T Phi() const { return fPhi; } T X() const { return fRho*std::cos(fPhi); } T Y() const { return fRho*std::sin(fPhi); } T Z() const { return fRho > 0 ? fRho*std::sinh(fEta) : fEta == 0 ? 0 : fEta > 0 ? fEta - etaMax() : fEta + etaMax() ; } T R() const { return fRho > 0 ? fRho*std::cosh(fEta) : fEta > etaMax() ? fEta - etaMax() : fEta < -etaMax() ? -fEta - etaMax() : 0 ; } T Mag2() const { return R()*R(); } T Perp2() const { return fRho*fRho; } T Theta() const { return fRho > 0 ? 2* std::atan( std::exp( - fEta ) ) : (fEta >= 0 ? 0 : pi() ); } // setters (only for data members) /** set the rho coordinate value keeping eta and phi constant */ void SetRho(T rho) { fRho = rho; } /** set the eta coordinate value keeping rho and phi constant */ void SetEta(T eta) { fEta = eta; } /** set the phi coordinate value keeping rho and eta constant */ void SetPhi(T phi) { fPhi = phi; Restrict(); } /** set all values using cartesian coordinates */ void SetXYZ(Scalar x, Scalar y, Scalar z); /** scale by a scalar quantity a -- for cylindrical eta coords, as long as a >= 0, only rho changes! */ void Scale (T a) { if (a < 0) { Negate(); a = -a; } // angles do not change when scaling by a positive quantity if (fRho > 0) { fRho *= a; } else if ( fEta > etaMax() ) { fEta = ( fEta-etaMax())*a + etaMax(); } else if ( fEta < -etaMax() ) { fEta = ( fEta+etaMax())*a - etaMax(); } // when rho==0 and eta is not above etaMax, vector represents 0 // and remains unchanged } /** negate the vector */ void Negate ( ) { fPhi = ( fPhi > 0 ? fPhi - pi() : fPhi + pi() ); fEta = -fEta; } // assignment operators /** generic assignment operator from any coordinate system */ template CylindricalEta3D & operator= ( const CoordSystem & c ) { fRho = c.Rho(); fEta = c.Eta(); fPhi = c.Phi(); return *this; } /** Exact component-by-component equality Note: Peculiar representaions of the zero vector such as (0,1,0) will not test as equal to one another. */ bool operator==(const CylindricalEta3D & rhs) const { return fRho == rhs.fRho && fEta == rhs.fEta && fPhi == rhs.fPhi; } bool operator!= (const CylindricalEta3D & rhs) const {return !(operator==(rhs));} // ============= Compatibility section ================== // The following make this coordinate system look enough like a CLHEP // vector that an assignment member template can work with either T x() const { return X();} T y() const { return Y();} T z() const { return Z(); } // ============= Specializations for improved speed ================== // (none) #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= void SetX(Scalar x); void SetY(Scalar y); void SetZ(Scalar z); void SetR(Scalar r); void SetTheta(Scalar theta); #endif private: T fRho; T fEta; T fPhi; }; } // end namespace Math } // end namespace ROOT // move implementations here to avoid circle dependencies #ifndef ROOT_Math_GenVector_Cartesian3D #include "Math/GenVector/Cartesian3D.h" #endif #if defined(__MAKECINT__) || defined(G__DICTIONARY) #ifndef ROOT_Math_GenVector_GenVector_exception #include "Math/GenVector/GenVector_exception.h" #endif #ifndef ROOT_Math_GenVector_Polar3D #include "Math/GenVector/Polar3D.h" #endif #endif namespace ROOT { namespace Math { template void CylindricalEta3D::SetXYZ(Scalar xx, Scalar yy, Scalar zz) { *this = Cartesian3D(xx, yy, zz); } #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= template void CylindricalEta3D::SetX(Scalar xx) { GenVector_exception e("CylindricalEta3D::SetX() is not supposed to be called"); throw e; Cartesian3D v(*this); v.SetX(xx); *this = CylindricalEta3D(v); } template void CylindricalEta3D::SetY(Scalar yy) { GenVector_exception e("CylindricalEta3D::SetY() is not supposed to be called"); throw e; Cartesian3D v(*this); v.SetY(yy); *this = CylindricalEta3D(v); } template void CylindricalEta3D::SetZ(Scalar zz) { GenVector_exception e("CylindricalEta3D::SetZ() is not supposed to be called"); throw e; Cartesian3D v(*this); v.SetZ(zz); *this = CylindricalEta3D(v); } template void CylindricalEta3D::SetR(Scalar r) { GenVector_exception e("CylindricalEta3D::SetR() is not supposed to be called"); throw e; Polar3D v(*this); v.SetR(r); *this = CylindricalEta3D(v); } template void CylindricalEta3D::SetTheta(Scalar theta) { GenVector_exception e("CylindricalEta3D::SetTheta() is not supposed to be called"); throw e; Polar3D v(*this); v.SetTheta(theta); *this = CylindricalEta3D(v); } #endif } // end namespace Math } // end namespace ROOT #endif /* ROOT_Math_GenVector_CylindricalEta3D */