// @(#)root/mathcore:$Id: 04c6d98020d7178ed5f0884f9466bca32b031565 $ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for class PxPyPzE4D // // Created by: fischler at Wed Jul 20 2005 // (starting from PxPyPzE4D by moneta) // // Last update: $Id: 04c6d98020d7178ed5f0884f9466bca32b031565 $ // #ifndef ROOT_Math_GenVector_PxPyPzE4D #define ROOT_Math_GenVector_PxPyPzE4D 1 #ifndef ROOT_Math_GenVector_eta #include "Math/GenVector/eta.h" #endif #ifndef ROOT_Math_GenVector_GenVector_exception #include "Math/GenVector/GenVector_exception.h" #endif #include namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors stored as (Px, Py, Pz, E). The metric used is (-,-,-,+) @ingroup GenVector */ template class PxPyPzE4D { public : typedef ScalarType Scalar; // --------- Constructors --------------- /** Default constructor with x=y=z=t=0 */ PxPyPzE4D() : fX(0.0), fY(0.0), fZ(0.0), fT(0.0) { } /** Constructor from x, y , z , t values */ PxPyPzE4D(Scalar px, Scalar py, Scalar pz, Scalar e) : fX(px), fY(py), fZ(pz), fT(e) { } /** construct from any vector or coordinate system class implementing x(), y() and z() and t() */ template explicit PxPyPzE4D(const CoordSystem & v) : fX( v.x() ), fY( v.y() ), fZ( v.z() ), fT( v.t() ) { } // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower // so we decided to re-implement them ( there is no no need to have them with g++4) /** copy constructor */ PxPyPzE4D(const PxPyPzE4D & v) : fX(v.fX), fY(v.fY), fZ(v.fZ), fT(v.fT) { } /** assignment operator */ PxPyPzE4D & operator = (const PxPyPzE4D & v) { fX = v.fX; fY = v.fY; fZ = v.fZ; fT = v.fT; return *this; } /** Set internal data based on an array of 4 Scalar numbers */ void SetCoordinates( const Scalar src[] ) { fX=src[0]; fY=src[1]; fZ=src[2]; fT=src[3]; } /** get internal data into an array of 4 Scalar numbers */ void GetCoordinates( Scalar dest[] ) const { dest[0] = fX; dest[1] = fY; dest[2] = fZ; dest[3] = fT; } /** Set internal data based on 4 Scalar numbers */ void SetCoordinates(Scalar px, Scalar py, Scalar pz, Scalar e) { fX=px; fY=py; fZ=pz; fT=e;} /** get internal data into 4 Scalar numbers */ void GetCoordinates(Scalar& px, Scalar& py, Scalar& pz, Scalar& e) const { px=fX; py=fY; pz=fZ; e=fT;} // --------- Coordinates and Coordinate-like Scalar properties ------------- // cartesian (Minkowski)coordinate accessors Scalar Px() const { return fX;} Scalar Py() const { return fY;} Scalar Pz() const { return fZ;} Scalar E() const { return fT;} Scalar X() const { return fX;} Scalar Y() const { return fY;} Scalar Z() const { return fZ;} Scalar T() const { return fT;} // other coordinate representation /** squared magnitude of spatial components */ Scalar P2() const { return fX*fX + fY*fY + fZ*fZ; } /** magnitude of spatial components (magnitude of 3-momentum) */ Scalar P() const { return std::sqrt(P2()); } Scalar R() const { return P(); } /** vector magnitude squared (or mass squared) */ Scalar M2() const { return fT*fT - fX*fX - fY*fY - fZ*fZ;} Scalar Mag2() const { return M2(); } /** invariant mass */ Scalar M() const { Scalar mm = M2(); if (mm >= 0) { return std::sqrt(mm); } else { GenVector::Throw ("PxPyPzE4D::M() - Tachyonic:\n" " P^2 > E^2 so the mass would be imaginary"); return -std::sqrt(-mm); } } Scalar Mag() const { return M(); } /** transverse spatial component squared */ Scalar Pt2() const { return fX*fX + fY*fY;} Scalar Perp2() const { return Pt2();} /** Transverse spatial component (P_perp or rho) */ Scalar Pt() const { return std::sqrt(Perp2());} Scalar Perp() const { return Pt();} Scalar Rho() const { return Pt();} /** transverse mass squared */ Scalar Mt2() const { return fT*fT - fZ*fZ; } /** transverse mass */ Scalar Mt() const { Scalar mm = Mt2(); if (mm >= 0) { return std::sqrt(mm); } else { GenVector::Throw ("PxPyPzE4D::Mt() - Tachyonic:\n" " Pz^2 > E^2 so the transverse mass would be imaginary"); return -std::sqrt(-mm); } } /** transverse energy squared */ Scalar Et2() const { // is (E^2 * pt ^2) / p^2 // but it is faster to form p^2 from pt^2 Scalar pt2 = Pt2(); return pt2 == 0 ? 0 : fT*fT * pt2/( pt2 + fZ*fZ ); } /** transverse energy */ Scalar Et() const { Scalar etet = Et2(); return fT < 0.0 ? -std::sqrt(etet) : std::sqrt(etet); } /** azimuthal angle */ Scalar Phi() const { return (fX == 0.0 && fY == 0.0) ? 0 : std::atan2(fY,fX); } /** polar angle */ Scalar Theta() const { return (fX == 0.0 && fY == 0.0 && fZ == 0.0) ? 0 : std::atan2(Pt(),fZ); } /** pseudorapidity */ Scalar Eta() const { return Impl::Eta_FromRhoZ ( Pt(), fZ); } // --------- Set Coordinates of this system --------------- /** set X value */ void SetPx( Scalar px) { fX = px; } /** set Y value */ void SetPy( Scalar py) { fY = py; } /** set Z value */ void SetPz( Scalar pz) { fZ = pz; } /** set T value */ void SetE( Scalar e) { fT = e; } /** set all values using cartesian coordinates */ void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e) { fX=px; fY=py; fZ=pz; fT=e; } // ------ Manipulations ------------- /** negate the 4-vector */ void Negate( ) { fX = -fX; fY = -fY; fZ = -fZ; fT = -fT;} /** scale coordinate values by a scalar quantity a */ void Scale( const Scalar & a) { fX *= a; fY *= a; fZ *= a; fT *= a; } /** Assignment from a generic coordinate system implementing x(), y(), z() and t() */ template PxPyPzE4D & operator = (const AnyCoordSystem & v) { fX = v.x(); fY = v.y(); fZ = v.z(); fT = v.t(); return *this; } /** Exact equality */ bool operator == (const PxPyPzE4D & rhs) const { return fX == rhs.fX && fY == rhs.fY && fZ == rhs.fZ && fT == rhs.fT; } bool operator != (const PxPyPzE4D & rhs) const {return !(operator==(rhs));} // ============= Compatibility section ================== // The following make this coordinate system look enough like a CLHEP // vector that an assignment member template can work with either Scalar x() const { return fX; } Scalar y() const { return fY; } Scalar z() const { return fZ; } Scalar t() const { return fT; } #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= void SetPt(Scalar pt); void SetEta(Scalar eta); void SetPhi(Scalar phi); void SetM(Scalar m); #endif private: /** (contigous) data containing the coordinate values x,y,z,t */ ScalarType fX; ScalarType fY; ScalarType fZ; ScalarType fT; }; } // end namespace Math } // end namespace ROOT #if defined(__MAKECINT__) || defined(G__DICTIONARY) // move implementations here to avoid circle dependencies #ifndef ROOT_Math_GenVector_PtEtaPhiE4D #include "Math/GenVector/PtEtaPhiE4D.h" #endif #ifndef ROOT_Math_GenVector_PtEtaPhiM4D #include "Math/GenVector/PtEtaPhiM4D.h" #endif namespace ROOT { namespace Math { // ====== Set member functions for coordinates in other systems ======= // throw always exceptions in this case template void PxPyPzE4D::SetPt(Scalar pt) { GenVector_exception e("PxPyPzE4D::SetPt() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetPt(pt); *this = PxPyPzE4D(v); } template void PxPyPzE4D::SetEta(Scalar eta) { GenVector_exception e("PxPyPzE4D::SetEta() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetEta(eta); *this = PxPyPzE4D(v); } template void PxPyPzE4D::SetPhi(Scalar phi) { GenVector_exception e("PxPyPzE4D::SetPhi() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetPhi(phi); *this = PxPyPzE4D(v); } template void PxPyPzE4D::SetM(Scalar m) { GenVector_exception e("PxPyPzE4D::SetM() is not supposed to be called"); throw e; PtEtaPhiM4D v(*this); v.SetM(m); *this = PxPyPzE4D(v); } } // end namespace Math } // end namespace ROOT #endif // endif __MAKE__CINT || G__DICTIONARY #endif // ROOT_Math_GenVector_PxPyPzE4D