// @(#)root/mathcore:$Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for class PxPyPzM4D // // Created by: fischler at Wed Jul 20 2005 // (starting from PxPyPzM4D by moneta) // // Last update: $Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $ // #ifndef ROOT_Math_GenVector_PxPyPzM4D #define ROOT_Math_GenVector_PxPyPzM4D 1 #ifndef ROOT_Math_GenVector_eta #include "Math/GenVector/eta.h" #endif #ifndef ROOT_Math_GenVector_GenVector_exception #include "Math/GenVector/GenVector_exception.h" #endif #include namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Class describing a 4D coordinate system or momentum-energy vectors stored as (Px, Py, Pz, M). This system is useful to describe ultra-relativistic particles (like electrons at LHC) to avoid numerical errors evaluating the mass when E >>> m The metric used is (-,-,-,+) Spacelike particles (M2 < 0) are described with negative mass values, but in this case m2 must alwasy be less than P2 to preserve a positive value of E2 @ingroup GenVector */ template class PxPyPzM4D { public : typedef ScalarType Scalar; // --------- Constructors --------------- /** Default constructor with x=y=z=m=0 */ PxPyPzM4D() : fX(0.0), fY(0.0), fZ(0.0), fM(0.0) { } /** Constructor from x, y , z , m values */ PxPyPzM4D(Scalar px, Scalar py, Scalar pz, Scalar m) : fX(px), fY(py), fZ(pz), fM(m) { if (fM < 0) RestrictNegMass(); } /** construct from any 4D coordinate system class implementing X(), Y(), X() and M() */ template explicit PxPyPzM4D(const CoordSystem & v) : fX( v.X() ), fY( v.Y() ), fZ( v.Z() ), fM( v.M() ) { } // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower // so we decided to re-implement them ( there is no no need to have them with g++4) /** copy constructor */ PxPyPzM4D(const PxPyPzM4D & v) : fX(v.fX), fY(v.fY), fZ(v.fZ), fM(v.fM) { } /** assignment operator */ PxPyPzM4D & operator = (const PxPyPzM4D & v) { fX = v.fX; fY = v.fY; fZ = v.fZ; fM = v.fM; return *this; } /** construct from any 4D coordinate system class implementing X(), Y(), X() and M() */ template PxPyPzM4D & operator = (const AnyCoordSystem & v) { fX = v.X(); fY = v.Y(); fZ = v.Z(); fM = v.M(); return *this; } /** Set internal data based on an array of 4 Scalar numbers */ void SetCoordinates( const Scalar src[] ) { fX=src[0]; fY=src[1]; fZ=src[2]; fM=src[3]; if (fM < 0) RestrictNegMass(); } /** get internal data into an array of 4 Scalar numbers */ void GetCoordinates( Scalar dest[] ) const { dest[0] = fX; dest[1] = fY; dest[2] = fZ; dest[3] = fM; } /** Set internal data based on 4 Scalar numbers */ void SetCoordinates(Scalar px, Scalar py, Scalar pz, Scalar m) { fX=px; fY=py; fZ=pz; fM=m; if (fM < 0) RestrictNegMass(); } /** get internal data into 4 Scalar numbers */ void GetCoordinates(Scalar& px, Scalar& py, Scalar& pz, Scalar& m) const { px=fX; py=fY; pz=fZ; m=fM;} // --------- Coordinates and Coordinate-like Scalar properties ------------- // cartesian (Minkowski)coordinate accessors Scalar Px() const { return fX;} Scalar Py() const { return fY;} Scalar Pz() const { return fZ;} Scalar M() const { return fM; } Scalar X() const { return fX;} Scalar Y() const { return fY;} Scalar Z() const { return fZ;} // other coordinate representation /** Energy */ Scalar E() const { return std::sqrt(E2() ); } Scalar T() const { return E();} /** squared magnitude of spatial components */ Scalar P2() const { return fX*fX + fY*fY + fZ*fZ; } /** magnitude of spatial components (magnitude of 3-momentum) */ Scalar P() const { return std::sqrt(P2()); } Scalar R() const { return P(); } /** vector magnitude squared (or mass squared) In case of negative mass (spacelike particles return negative values) */ Scalar M2() const { return ( fM >= 0 ) ? fM*fM : -fM*fM; } Scalar Mag2() const { return M2(); } Scalar Mag() const { return M(); } /** energy squared */ Scalar E2() const { Scalar e2 = P2() + M2(); // protect against numerical errors when M2() is negative return e2 > 0 ? e2 : 0; } /** transverse spatial component squared */ Scalar Pt2() const { return fX*fX + fY*fY;} Scalar Perp2() const { return Pt2();} /** Transverse spatial component (P_perp or rho) */ Scalar Pt() const { return std::sqrt(Perp2());} Scalar Perp() const { return Pt();} Scalar Rho() const { return Pt();} /** transverse mass squared */ Scalar Mt2() const { return E2() - fZ*fZ; } /** transverse mass */ Scalar Mt() const { Scalar mm = Mt2(); if (mm >= 0) { return std::sqrt(mm); } else { GenVector::Throw ("PxPyPzM4D::Mt() - Tachyonic:\n" " Pz^2 > E^2 so the transverse mass would be imaginary"); return -std::sqrt(-mm); } } /** transverse energy squared */ Scalar Et2() const { // is (E^2 * pt ^2) / p^2 // but it is faster to form p^2 from pt^2 Scalar pt2 = Pt2(); return pt2 == 0 ? 0 : E2() * pt2/( pt2 + fZ*fZ ); } /** transverse energy */ Scalar Et() const { Scalar etet = Et2(); return std::sqrt(etet); } /** azimuthal angle */ Scalar Phi() const { return (fX == 0.0 && fY == 0.0) ? 0.0 : std::atan2(fY,fX); } /** polar angle */ Scalar Theta() const { return (fX == 0.0 && fY == 0.0 && fZ == 0.0) ? 0 : std::atan2(Pt(),fZ); } /** pseudorapidity */ Scalar Eta() const { return Impl::Eta_FromRhoZ ( Pt(), fZ); } // --------- Set Coordinates of this system --------------- /** set X value */ void SetPx( Scalar px) { fX = px; } /** set Y value */ void SetPy( Scalar py) { fY = py; } /** set Z value */ void SetPz( Scalar pz) { fZ = pz; } /** set T value */ void SetM( Scalar m) { fM = m; if (fM < 0) RestrictNegMass(); } /** set all values */ void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e); // ------ Manipulations ------------- /** negate the 4-vector - Note that the energy cannot be negate (would need an additional data member) therefore negate will work only on the spatial components. One would need to use negate only with vectors having the energy as data members */ void Negate( ) { fX = -fX; fY = -fY; fZ = -fZ; GenVector::Throw ("PxPyPzM4D::Negate - cannot negate the energy - can negate only the spatial components"); } /** scale coordinate values by a scalar quantity a */ void Scale( const Scalar & a) { fX *= a; fY *= a; fZ *= a; fM *= a; } /** Exact equality */ bool operator == (const PxPyPzM4D & rhs) const { return fX == rhs.fX && fY == rhs.fY && fZ == rhs.fZ && fM == rhs.fM; } bool operator != (const PxPyPzM4D & rhs) const {return !(operator==(rhs));} // ============= Compatibility section ================== // The following make this coordinate system look enough like a CLHEP // vector that an assignment member template can work with either Scalar x() const { return X(); } Scalar y() const { return Y(); } Scalar z() const { return Z(); } Scalar t() const { return E(); } #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= void SetPt(Scalar pt); void SetEta(Scalar eta); void SetPhi(Scalar phi); void SetE(Scalar t); #endif private: // restrict the value of negative mass to avoid unphysical negative E2 values // M2 must be less than P2 for the tachionic particles - otherwise use positive values inline void RestrictNegMass() { if ( fM >=0 ) return; if ( P2() - fM*fM < 0 ) { GenVector::Throw("PxPyPzM4D::unphysical value of mass, set to closest physical value"); fM = - P(); } return; } /** (contigous) data containing the coordinate values x,y,z,t */ ScalarType fX; ScalarType fY; ScalarType fZ; ScalarType fM; }; } // end namespace Math } // end namespace ROOT // move implementations here to avoid circle dependencies #ifndef ROOT_Math_GenVector_PxPyPzE4D #include "Math/GenVector/PxPyPzE4D.h" #endif #ifndef ROOT_Math_GenVector_PtEtaPhiM4D #include "Math/GenVector/PtEtaPhiM4D.h" #endif namespace ROOT { namespace Math { template inline void PxPyPzM4D::SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e) { *this = PxPyPzE4D (px, py, pz, e); } #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= // ====== Set member functions for coordinates in other systems ======= template inline void PxPyPzM4D::SetPt(ScalarType pt) { GenVector_exception e("PxPyPzM4D::SetPt() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetPt(pt); *this = PxPyPzM4D(v); } template inline void PxPyPzM4D::SetEta(ScalarType eta) { GenVector_exception e("PxPyPzM4D::SetEta() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetEta(eta); *this = PxPyPzM4D(v); } template inline void PxPyPzM4D::SetPhi(ScalarType phi) { GenVector_exception e("PxPyPzM4D::SetPhi() is not supposed to be called"); throw e; PtEtaPhiE4D v(*this); v.SetPhi(phi); *this = PxPyPzM4D(v); } template inline void PxPyPzM4D::SetE(ScalarType energy) { GenVector_exception e("PxPyPzM4D::SetE() is not supposed to be called"); throw e; PxPyPzE4D v(*this); v.SetE(energy); *this = PxPyPzM4D(v); } #endif // endif __MAKE__CINT || G__DICTIONARY } // end namespace Math } // end namespace ROOT #endif // ROOT_Math_GenVector_PxPyPzM4D