// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team * * * * * **********************************************************************/ // Header file for rotation in 3 dimensions, represented by a quaternion // Created by: Mark Fischler Thurs June 9 2005 // // Last update: $Id$ // #ifndef ROOT_Math_GenVector_Quaternion #define ROOT_Math_GenVector_Quaternion 1 #include "Math/GenVector/Cartesian3D.h" #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/PositionVector3D.h" #include "Math/GenVector/LorentzVector.h" #include "Math/GenVector/3DConversions.h" #include "Math/GenVector/3DDistances.h" #include #include namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k). This is the optimal representation for multiplication of multiple rotations, and for computation of group-manifold-invariant distance between two rotations. See also ROOT::Math::AxisAngle, ROOT::Math::EulerAngles, and ROOT::Math::Rotation3D. @ingroup GenVector */ class Quaternion { public: typedef double Scalar; // ========== Constructors and Assignment ===================== /** Default constructor (identity rotation) */ Quaternion() : fU(1.0) , fI(0.0) , fJ(0.0) , fK(0.0) { } /** Construct given a pair of pointers or iterators defining the beginning and end of an array of four Scalars */ template Quaternion(IT begin, IT end) { SetComponents(begin,end); } // ======== Construction From other Rotation Forms ================== /** Construct from another supported rotation type (see gv_detail::convert ) */ template explicit Quaternion(const OtherRotation & r) {gv_detail::convert(r,*this);} /** Construct from four Scalars representing the coefficients of u, i, j, k */ Quaternion(Scalar u, Scalar i, Scalar j, Scalar k) : fU(u), fI(i), fJ(j), fK(k) { } // The compiler-generated copy ctor, copy assignment, and dtor are OK. /** Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality. */ void Rectify(); /** Assign from another supported rotation type (see gv_detail::convert ) */ template Quaternion & operator=( OtherRotation const & r ) { gv_detail::convert(r,*this); return *this; } // ======== Components ============== /** Set the four components given an iterator to the start of the desired data, and another to the end (4 past start). */ template void SetComponents(IT begin, IT end) { (void)end; fU = *begin++; fI = *begin++; fJ = *begin++; fK = *begin++; assert (end==begin); } /** Get the components into data specified by an iterator begin and another to the end of the desired data (4 past start). */ template void GetComponents(IT begin, IT end) const { (void)end; *begin++ = fU; *begin++ = fI; *begin++ = fJ; *begin++ = fK; assert (end==begin); } /** Get the components into data specified by an iterator begin */ template void GetComponents(IT begin ) const { *begin++ = fU; *begin++ = fI; *begin++ = fJ; *begin = fK; } /** Set the components based on four Scalars. The sum of the squares of these Scalars should be 1; no checking is done. */ void SetComponents(Scalar u, Scalar i, Scalar j, Scalar k) { fU=u; fI=i; fJ=j; fK=k; } /** Get the components into four Scalars. */ void GetComponents(Scalar & u, Scalar & i, Scalar & j, Scalar & k) const { u=fU; i=fI; j=fJ; k=fK; } /** Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix, I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z */ Scalar U() const { return fU; } Scalar I() const { return fI; } Scalar J() const { return fJ; } Scalar K() const { return fK; } // =========== operations ============== /** Rotation operation on a cartesian vector */ typedef DisplacementVector3D, DefaultCoordinateSystemTag > XYZVector; XYZVector operator() (const XYZVector & v) const { const Scalar alpha = fU*fU - fI*fI - fJ*fJ - fK*fK; const Scalar twoQv = 2*(fI*v.X() + fJ*v.Y() + fK*v.Z()); const Scalar twoU = 2 * fU; return XYZVector ( alpha * v.X() + twoU * (fJ*v.Z() - fK*v.Y()) + twoQv * fI , alpha * v.Y() + twoU * (fK*v.X() - fI*v.Z()) + twoQv * fJ , alpha * v.Z() + twoU * (fI*v.Y() - fJ*v.X()) + twoQv * fK ); } /** Rotation operation on a displacement vector in any coordinate system */ template DisplacementVector3D operator() (const DisplacementVector3D & v) const { DisplacementVector3D< Cartesian3D > xyz(v.X(), v.Y(), v.Z()); DisplacementVector3D< Cartesian3D > rxyz = operator()(xyz); DisplacementVector3D< CoordSystem,Tag > vNew; vNew.SetXYZ( rxyz.X(), rxyz.Y(), rxyz.Z() ); return vNew; } /** Rotation operation on a position vector in any coordinate system */ template PositionVector3D operator() (const PositionVector3D & p) const { DisplacementVector3D< Cartesian3D,Tag > xyz(p); DisplacementVector3D< Cartesian3D,Tag > rxyz = operator()(xyz); return PositionVector3D ( rxyz ); } /** Rotation operation on a Lorentz vector in any 4D coordinate system */ template LorentzVector operator() (const LorentzVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v.Vect()); xyz = operator()(xyz); LorentzVector< PxPyPzE4D > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E()); return LorentzVector ( xyzt ); } /** Rotation operation on an arbitrary vector v. Preconditions: v must implement methods x(), y(), and z() and the arbitrary vector type must have a constructor taking (x,y,z) */ template ForeignVector operator() (const ForeignVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v); DisplacementVector3D< Cartesian3D > rxyz = operator()(xyz); return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() ); } /** Overload operator * for rotation on a vector */ template inline AVector operator* (const AVector & v) const { return operator()(v); } /** Invert a rotation in place */ void Invert() { fI = -fI; fJ = -fJ; fK = -fK; } /** Return inverse of a rotation */ Quaternion Inverse() const { return Quaternion(fU, -fI, -fJ, -fK); } // ========= Multi-Rotation Operations =============== /** Multiply (combine) two rotations */ /** Multiply (combine) two rotations */ Quaternion operator * (const Quaternion & q) const { return Quaternion ( fU*q.fU - fI*q.fI - fJ*q.fJ - fK*q.fK , fU*q.fI + fI*q.fU + fJ*q.fK - fK*q.fJ , fU*q.fJ - fI*q.fK + fJ*q.fU + fK*q.fI , fU*q.fK + fI*q.fJ - fJ*q.fI + fK*q.fU ); } Quaternion operator * (const Rotation3D & r) const; Quaternion operator * (const AxisAngle & a) const; Quaternion operator * (const EulerAngles & e) const; Quaternion operator * (const RotationZYX & r) const; Quaternion operator * (const RotationX & rx) const; Quaternion operator * (const RotationY & ry) const; Quaternion operator * (const RotationZ & rz) const; /** Post-Multiply (on right) by another rotation : T = T*R */ template Quaternion & operator *= (const R & r) { return *this = (*this)*r; } /** Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-sphere with diametrically opposite points identified. The (rotation group-invariant) is the smaller of the two possible angles between the images of the two totations on that sphere. Thus the distance is never greater than pi/2. */ Scalar Distance(const Quaternion & q) const ; /** Equality/inequality operators */ bool operator == (const Quaternion & rhs) const { if( fU != rhs.fU ) return false; if( fI != rhs.fI ) return false; if( fJ != rhs.fJ ) return false; if( fK != rhs.fK ) return false; return true; } bool operator != (const Quaternion & rhs) const { return ! operator==(rhs); } private: Scalar fU; Scalar fI; Scalar fJ; Scalar fK; }; // Quaternion // ============ Class Quaternion ends here ============ /** Distance between two rotations */ template inline typename Quaternion::Scalar Distance ( const Quaternion& r1, const R & r2) {return gv_detail::dist(r1,r2);} /** Multiplication of an axial rotation by an AxisAngle */ Quaternion operator* (RotationX const & r1, Quaternion const & r2); Quaternion operator* (RotationY const & r1, Quaternion const & r2); Quaternion operator* (RotationZ const & r1, Quaternion const & r2); /** Stream Output and Input */ // TODO - I/O should be put in the manipulator form std::ostream & operator<< (std::ostream & os, const Quaternion & q); } // namespace Math } // namespace ROOT #endif // ROOT_Math_GenVector_Quaternion