// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team * * * * * **********************************************************************/ // Header file for class RotationZ representing a rotation about the Z axis // // Created by: Mark Fischler Mon July 18 2005 // // Last update: $Id$ // #ifndef ROOT_Math_GenVector_RotationX #define ROOT_Math_GenVector_RotationX 1 #include "Math/GenVector/Cartesian3D.h" #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/PositionVector3D.h" #include "Math/GenVector/LorentzVector.h" #include "Math/GenVector/3DDistances.h" #include "Math/GenVector/RotationXfwd.h" #include namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Rotation class representing a 3D rotation about the X axis by the angle of rotation. For efficiency reason, in addition to the the angle, the sine and cosine of the angle are held @ingroup GenVector */ class RotationX { public: typedef double Scalar; // ========== Constructors and Assignment ===================== /** Default constructor (identity rotation) */ RotationX() : fAngle(0), fSin(0), fCos(1) { } /** Construct from an angle */ explicit RotationX( Scalar angle ) : fAngle(angle), fSin(std::sin(angle)), fCos(std::cos(angle)) { Rectify(); } // The compiler-generated copy ctor, copy assignment, and dtor are OK. /** Rectify makes sure the angle is in (-pi,pi] */ void Rectify() { if ( std::fabs(fAngle) >= M_PI ) { double x = fAngle / (2.0 * M_PI); fAngle = (2.0 * M_PI) * ( x + std::floor(.5-x) ); fSin = std::sin(fAngle); fCos = std::cos(fAngle); } } // ======== Components ============== /** Set given the angle. */ void SetAngle (Scalar angle) { fSin=std::sin(angle); fCos=std::cos(angle); fAngle= angle; Rectify(); } void SetComponents (Scalar angle) { SetAngle(angle); } /** Get the angle */ void GetAngle ( Scalar & angle ) const { angle = atan2 (fSin,fCos); } void GetComponents ( Scalar & angle ) const { GetAngle(angle); } /** Angle of rotation */ Scalar Angle () const { return atan2 (fSin,fCos); } /** Sine or Cosine of the rotation angle */ Scalar SinAngle () const { return fSin; } Scalar CosAngle () const { return fCos; } // =========== operations ============== /** Rotation operation on a cartesian vector */ // typedef DisplacementVector3D< Cartesian3D > XYZVector; // XYZVector operator() (const XYZVector & v) const { // return XYZVector ( v.x(), fCos*v.y()-fSin*v.z(), fCos*v.z()+fSin*v.y() ); // } /** Rotation operation on a displacement vector in any coordinate system */ template DisplacementVector3D operator() (const DisplacementVector3D & v) const { DisplacementVector3D< Cartesian3D,U > xyz; xyz.SetXYZ( v.X(), fCos*v.Y()-fSin*v.Z(), fCos*v.Z()+fSin*v.Y() ); return DisplacementVector3D(xyz); } /** Rotation operation on a position vector in any coordinate system */ template PositionVector3D operator() (const PositionVector3D & v) const { DisplacementVector3D< Cartesian3D,U > xyz(v); DisplacementVector3D< Cartesian3D,U > rxyz = operator()(xyz); return PositionVector3D ( rxyz ); } /** Rotation operation on a Lorentz vector in any 4D coordinate system */ template LorentzVector operator() (const LorentzVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v.Vect()); xyz = operator()(xyz); LorentzVector< PxPyPzE4D > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E()); return LorentzVector ( xyzt ); } /** Rotation operation on an arbitrary vector v. Preconditions: v must implement methods x(), y(), and z() and the arbitrary vector type must have a constructor taking (x,y,z) */ template ForeignVector operator() (const ForeignVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v); DisplacementVector3D< Cartesian3D > rxyz = operator()(xyz); return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() ); } /** Overload operator * for rotation on a vector */ template inline AVector operator* (const AVector & v) const { return operator()(v); } /** Invert a rotation in place */ void Invert() { fAngle = -fAngle; fSin = -fSin; } /** Return inverse of a rotation */ RotationX Inverse() const { RotationX t(*this); t.Invert(); return t; } // ========= Multi-Rotation Operations =============== /** Multiply (combine) two rotations */ RotationX operator * (const RotationX & r) const { RotationX ans; double x = (fAngle + r.fAngle) / (2.0 * M_PI); ans.fAngle = (2.0 * M_PI) * ( x + std::floor(.5-x) ); ans.fSin = fSin*r.fCos + fCos*r.fSin; ans.fCos = fCos*r.fCos - fSin*r.fSin; return ans; } /** Post-Multiply (on right) by another rotation : T = T*R */ RotationX & operator *= (const RotationX & r) { return *this = (*this)*r; } /** Equality/inequality operators */ bool operator == (const RotationX & rhs) const { if( fAngle != rhs.fAngle ) return false; return true; } bool operator != (const RotationX & rhs) const { return ! operator==(rhs); } private: Scalar fAngle; // rotation angle Scalar fSin; // sine of the rotation angle Scalar fCos; // cosine of the rotaiton angle }; // RotationX // ============ Class RotationX ends here ============ /** Distance between two rotations */ template inline typename RotationX::Scalar Distance ( const RotationX& r1, const R & r2) {return gv_detail::dist(r1,r2);} /** Stream Output and Input */ // TODO - I/O should be put in the manipulator form inline std::ostream & operator<< (std::ostream & os, const RotationX & r) { os << " RotationX(" << r.Angle() << ") "; return os; } } // namespace Math } // namespace ROOT #endif // ROOT_Math_GenVector_RotationX