// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , FNAL MathLib Team * * * * * **********************************************************************/ // Header source file for function calculating eta // // Created by: Lorenzo Moneta at 14 Jun 2007 #ifndef ROOT_Math_GenVector_eta #define ROOT_Math_GenVector_eta 1 #ifndef ROOT_Math_GenVector_etaMax #include "Math/GenVector/etaMax.h" #endif #include #include namespace ROOT { namespace Math { namespace Impl { /** Calculate eta given rho and zeta. This formula is faster than the standard calculation (below) from log(tan(theta/2) but one has to be careful when rho is much smaller than z (large eta values) Formula is eta = log( zs + sqrt(zs^2 + 1) ) where zs = z/rho For large value of z_scaled (tan(theta) ) one can appoximate the sqrt via a Taylor expansion We do the approximation of the sqrt if the numerical error is of the same order of second term of the sqrt.expansion: eps > 1/zs^4 => zs > 1/(eps^0.25) When rho == 0 we use etaMax (see definition in etaMax.h) */ template inline Scalar Eta_FromRhoZ(Scalar rho, Scalar z) { if (rho > 0) { // value to control Taylor expansion of sqrt static const Scalar big_z_scaled = std::pow(std::numeric_limits::epsilon(),static_cast(-.25)); Scalar z_scaled = z/rho; if (std::fabs(z_scaled) < big_z_scaled) { return std::log(z_scaled+std::sqrt(z_scaled*z_scaled+1.0)); } else { // apply correction using first order Taylor expansion of sqrt return z>0 ? std::log(2.0*z_scaled + 0.5/z_scaled) : -std::log(-2.0*z_scaled); } } // case vector has rho = 0 else if (z==0) { return 0; } else if (z>0) { return z + etaMax(); } else { return z - etaMax(); } } /** Implementation of eta from -log(tan(theta/2)). This is convenient when theta is already known (for example in a polar coorindate system) */ template inline Scalar Eta_FromTheta(Scalar theta, Scalar r) { Scalar tanThetaOver2 = std::tan( theta/2.); if (tanThetaOver2 == 0) { return r + etaMax(); } else if (tanThetaOver2 > std::numeric_limits::max()) { return -r - etaMax(); } else { return -std::log(tanThetaOver2); } } } // end namespace Impl } // namespace Math } // namespace ROOT #endif /* ROOT_Math_GenVector_etaMax */