// @(#)root/roostats:$Id$ // Authors: Kevin Belasco 17/06/2009 // Authors: Kyle Cranmer 17/06/2009 /************************************************************************* * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOSTATS_MCMCCalculator #define ROOSTATS_MCMCCalculator #ifndef ROOT_Rtypes #include "Rtypes.h" #endif #ifndef ROOT_TObject #include "TObject.h" #endif #ifndef ROO_ABS_PDF #include "RooAbsPdf.h" #endif #ifndef ROO_ABS_DATA #include "RooAbsData.h" #endif #ifndef ROO_ARG_SET #include "RooArgSet.h" #endif #ifndef ROO_ARG_LIST #include "RooArgList.h" #endif #ifndef ROOSTATS_ProposalFunction #include "RooStats/ProposalFunction.h" #endif #ifndef ROOSTATS_IntervalCalculator #include "RooStats/IntervalCalculator.h" #endif #ifndef RooStats_MCMCInterval #include "RooStats/MCMCInterval.h" #endif namespace RooStats { class ModelConfig; class MCMCCalculator : public IntervalCalculator, public TNamed { public: // default constructor MCMCCalculator(); // Constructor for automatic configuration with basic settings and a // ModelConfig. Uses a UniformProposal, 10,000 iterations, 40 burn in // steps, 50 bins for each RooRealVar, determines interval by histogram, // and finds a 95% confidence interval. Any of these basic settings can // be overridden by calling one of the Set...() methods. MCMCCalculator(RooAbsData& data, const ModelConfig& model); virtual ~MCMCCalculator() {} // Main interface to get a ConfInterval virtual MCMCInterval* GetInterval() const; // Get the size of the test (eg. rate of Type I error) virtual Double_t Size() const {return fSize;} // Get the Confidence level for the test virtual Double_t ConfidenceLevel() const {return 1.-fSize;} virtual void SetModel(const ModelConfig & model); // Set the DataSet if not already there virtual void SetData(RooAbsData& data) { fData = &data; } // Set the Pdf if not already there virtual void SetPdf(RooAbsPdf& pdf) { fPdf = &pdf; } // Set the Prior Pdf if not already there virtual void SetPriorPdf(RooAbsPdf& pdf) { fPriorPdf = &pdf; } // specify the parameters of interest in the interval virtual void SetParameters(const RooArgSet& set) { fPOI.removeAll(); fPOI.add(set); } // specify the parameters to store in the Markov chain // By default all the parameters are stored virtual void SetChainParameters(const RooArgSet & set) { fChainParams.removeAll(); fChainParams.add(set); } // specify the nuisance parameters (eg. the rest of the parameters) virtual void SetNuisanceParameters(const RooArgSet& set) {fNuisParams.removeAll(); fNuisParams.add(set);} // set the conditional observables which will be used when creating the NLL // so the pdf's will not be normalized on the conditional observables when computing the NLL virtual void SetConditionalObservables(const RooArgSet& set) {fConditionalObs.removeAll(); fConditionalObs.add(set);} // set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval) virtual void SetTestSize(Double_t size) {fSize = size;} // set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval) virtual void SetConfidenceLevel(Double_t cl) {fSize = 1.-cl;} // set the proposal function for suggesting new points for the MCMC virtual void SetProposalFunction(ProposalFunction& proposalFunction) { fPropFunc = &proposalFunction; } // set the number of iterations to run the metropolis algorithm virtual void SetNumIters(Int_t numIters) { fNumIters = numIters; } // set the number of steps in the chain to discard as burn-in, // starting from the first virtual void SetNumBurnInSteps(Int_t numBurnInSteps) { fNumBurnInSteps = numBurnInSteps; } // set the number of bins to create for each axis when constructing the interval virtual void SetNumBins(Int_t numBins) { fNumBins = numBins; } // set which variables to put on each axis virtual void SetAxes(RooArgList& axes) { fAxes = &axes; } // set whether to use kernel estimation to determine the interval virtual void SetUseKeys(Bool_t useKeys) { fUseKeys = useKeys; } // set whether to use sparse histogram (if using histogram at all) virtual void SetUseSparseHist(Bool_t useSparseHist) { fUseSparseHist = useSparseHist; } // set what type of interval to have the MCMCInterval represent virtual void SetIntervalType(enum MCMCInterval::IntervalType intervalType) { fIntervalType = intervalType; } // Set the left side tail fraction. This will automatically configure the // MCMCInterval to find a tail-fraction interval. // Note: that `a' must be in the range 0 <= a <= 1 // or the user will be notified of the error virtual void SetLeftSideTailFraction(Double_t a); // Set the desired level of confidence-level accuracy for Keys interval // determination. // // When determining the cutoff PDF height that gives the // desired confidence level (C_d), the algorithm will consider acceptable // any found confidence level c such that Abs(c - C_d) < epsilon. // // Any value of this "epsilon" > 0 is considered acceptable, though it is // advisable to not use a value too small, because the integration of the // Keys PDF sometimes does not have extremely high accuracy. virtual void SetKeysConfidenceAccuracy(Double_t epsilon) { if (epsilon < 0) coutE(InputArguments) << "MCMCInterval::SetEpsilon will not allow " << "negative epsilon value" << std::endl; else fEpsilon = epsilon; } // When the shortest interval using Keys PDF could not be found to have // the desired confidence level +/- the accuracy (see // SetKeysConfidenceAccuracy()), the interval determination algorithm // will have to terminate with an unsatisfactory confidence level when // the bottom and top of the cutoff search range are very close to being // equal. This scenario comes into play when there seems to be an error // in the accuracy of the Keys PDF integration, so the search range // continues to shrink without converging to a cutoff value that will // give an acceptable confidence level. To choose how small to allow the // search range to be before terminating, set the fraction delta such // that the search will terminate when topCutoff (a) and bottomCutoff (b) // satisfy this condition: // // TMath::Abs(a - b) < TMath::Abs(delta * (a + b)/2) virtual void SetKeysTerminationThreshold(Double_t delta) { if (delta < 0.) coutE(InputArguments) << "MCMCInterval::SetDelta will not allow " << "negative delta value" << std::endl; else fDelta = delta; } protected: Double_t fSize; // size of the test (eg. specified rate of Type I error) RooArgSet fPOI; // parameters of interest for interval RooArgSet fNuisParams; // nuisance parameters for interval (not really used) RooArgSet fChainParams; // parameters to store in the chain (if not specified they are all of them ) RooArgSet fConditionalObs; // conditional observables mutable ProposalFunction* fPropFunc; // Proposal function for MCMC integration RooAbsPdf * fPdf; // pointer to common PDF (owned by the workspace) RooAbsPdf * fPriorPdf; // pointer to prior PDF (owned by the workspace) RooAbsData * fData; // pointer to the data (owned by the workspace) Int_t fNumIters; // number of iterations to run metropolis algorithm Int_t fNumBurnInSteps; // number of iterations to discard as burn-in, starting from the first Int_t fNumBins; // set the number of bins to create for each // axis when constructing the interval RooArgList * fAxes; // which variables to put on each axis Bool_t fUseKeys; // whether to use kernel estimation to determine interval Bool_t fUseSparseHist; // whether to use sparse histogram (if using hist at all) Double_t fLeftSideTF; // left side tail-fraction for interval Double_t fEpsilon; // acceptable error for Keys interval determination Double_t fDelta; // acceptable error for Keys cutoffs being equal // topCutoff (a) considered == bottomCutoff (b) iff // (TMath::Abs(a - b) < TMath::Abs(fDelta * (a + b)/2)); // Theoretically, the Abs is not needed here, but // floating-point arithmetic does not always work // perfectly, and the Abs doesn't hurt enum MCMCInterval::IntervalType fIntervalType; // type of interval to find void SetupBasicUsage(); void SetBins(const RooAbsCollection& coll, Int_t numBins) const { TIterator* it = coll.createIterator(); RooAbsArg* r; while ((r = (RooAbsArg*)it->Next()) != NULL) if (dynamic_cast(r)) ((RooRealVar*)r)->setBins(numBins); delete it; } ClassDef(MCMCCalculator,3) // Markov Chain Monte Carlo calculator for Bayesian credible intervals }; } #endif