## \file ## \ingroup tutorial_pyroot ## \notebook -nodraw ## This tutorial illustrates how PyROOT supports declaring C++ callables from ## Python callables making them, for example, usable with RDataFrame. The feature ## uses the numba Python package for just-in-time compilation of the Python callable ## and supports fundamental types and ROOT::RVec thereof. ## ## \macro_code ## \macro_output ## ## \date March 2020 ## \author Stefan Wunsch import ROOT # To mark a Python callable to be used from C++, you have to use the decorator # provided by PyROOT passing the C++ types of the input arguments and the return # value. @ROOT.Numba.Declare(['float', 'int'], 'float') def pypow(x, y): return x**y # The Python callable is now available from C++ in the Numba namespace. # For example, we can use it from the interpreter. ROOT.gInterpreter.ProcessLine('cout << "2^3 = " << Numba::pypow(2, 3) << endl;') # Or we can use the callable as well within a RDataFrame workflow. data = ROOT.RDataFrame(4).Define('x', '(float)rdfentry_')\ .Define('x_pow3', 'Numba::pypow(x, 3)')\ .AsNumpy() print('pypow({}) = {}'.format(data['x'], data['x_pow3'])) # ROOT uses the numba Python package to create C++ functions from python ones. # We support as input and return types of the callable fundamental types and # ROOT::RVec thereof. See the following callable computing the power of the # elements in an array. @ROOT.Numba.Declare(['RVec', 'int'], 'RVec') def pypowarray(x, y): return x**y ROOT.gInterpreter.ProcessLine(''' ROOT::RVec x = {0, 1, 2, 3}; cout << "pypowarray(" << x << ") = " << Numba::pypowarray(x, 3) << endl; ''')