# -*- coding: utf-8 -*- """Layers that act as activation functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from .. import activations from .. import initializers from .. import regularizers from .. import constraints from ..engine.base_layer import Layer from ..engine.base_layer import InputSpec from .. import backend as K from ..legacy import interfaces class LeakyReLU(Layer): """Leaky version of a Rectified Linear Unit. It allows a small gradient when the unit is not active: `f(x) = alpha * x for x < 0`, `f(x) = x for x >= 0`. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments alpha: float >= 0. Negative slope coefficient. # References - [Rectifier Nonlinearities Improve Neural Network Acoustic Models](https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf) """ def __init__(self, alpha=0.3, **kwargs): super(LeakyReLU, self).__init__(**kwargs) self.supports_masking = True self.alpha = K.cast_to_floatx(alpha) def call(self, inputs): return K.relu(inputs, alpha=self.alpha) def get_config(self): config = {'alpha': float(self.alpha)} base_config = super(LeakyReLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class PReLU(Layer): """Parametric Rectified Linear Unit. It follows: `f(x) = alpha * x for x < 0`, `f(x) = x for x >= 0`, where `alpha` is a learned array with the same shape as x. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments alpha_initializer: initializer function for the weights. alpha_regularizer: regularizer for the weights. alpha_constraint: constraint for the weights. shared_axes: the axes along which to share learnable parameters for the activation function. For example, if the incoming feature maps are from a 2D convolution with output shape `(batch, height, width, channels)`, and you wish to share parameters across space so that each filter only has one set of parameters, set `shared_axes=[1, 2]`. # References - [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](https://arxiv.org/abs/1502.01852) """ @interfaces.legacy_prelu_support def __init__(self, alpha_initializer='zeros', alpha_regularizer=None, alpha_constraint=None, shared_axes=None, **kwargs): super(PReLU, self).__init__(**kwargs) self.supports_masking = True self.alpha_initializer = initializers.get(alpha_initializer) self.alpha_regularizer = regularizers.get(alpha_regularizer) self.alpha_constraint = constraints.get(alpha_constraint) if shared_axes is None: self.shared_axes = None elif not isinstance(shared_axes, (list, tuple)): self.shared_axes = [shared_axes] else: self.shared_axes = list(shared_axes) def build(self, input_shape): param_shape = list(input_shape[1:]) self.param_broadcast = [False] * len(param_shape) if self.shared_axes is not None: for i in self.shared_axes: param_shape[i - 1] = 1 self.param_broadcast[i - 1] = True self.alpha = self.add_weight(shape=param_shape, name='alpha', initializer=self.alpha_initializer, regularizer=self.alpha_regularizer, constraint=self.alpha_constraint) # Set input spec axes = {} if self.shared_axes: for i in range(1, len(input_shape)): if i not in self.shared_axes: axes[i] = input_shape[i] self.input_spec = InputSpec(ndim=len(input_shape), axes=axes) self.built = True def call(self, inputs, mask=None): pos = K.relu(inputs) if K.backend() == 'theano': neg = (K.pattern_broadcast(self.alpha, self.param_broadcast) * (inputs - K.abs(inputs)) * 0.5) else: neg = -self.alpha * K.relu(-inputs) return pos + neg def get_config(self): config = { 'alpha_initializer': initializers.serialize(self.alpha_initializer), 'alpha_regularizer': regularizers.serialize(self.alpha_regularizer), 'alpha_constraint': constraints.serialize(self.alpha_constraint), 'shared_axes': self.shared_axes } base_config = super(PReLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class ELU(Layer): """Exponential Linear Unit. It follows: `f(x) = alpha * (exp(x) - 1.) for x < 0`, `f(x) = x for x >= 0`. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments alpha: scale for the negative factor. # References - [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)](https://arxiv.org/abs/1511.07289v1) """ def __init__(self, alpha=1.0, **kwargs): super(ELU, self).__init__(**kwargs) self.supports_masking = True self.alpha = K.cast_to_floatx(alpha) def call(self, inputs): return K.elu(inputs, self.alpha) def get_config(self): config = {'alpha': float(self.alpha)} base_config = super(ELU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class ThresholdedReLU(Layer): """Thresholded Rectified Linear Unit. It follows: `f(x) = x for x > theta`, `f(x) = 0 otherwise`. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments theta: float >= 0. Threshold location of activation. # References - [Zero-Bias Autoencoders and the Benefits of Co-Adapting Features](http://arxiv.org/abs/1402.3337) """ def __init__(self, theta=1.0, **kwargs): super(ThresholdedReLU, self).__init__(**kwargs) self.supports_masking = True self.theta = K.cast_to_floatx(theta) def call(self, inputs, mask=None): return inputs * K.cast(K.greater(inputs, self.theta), K.floatx()) def get_config(self): config = {'theta': float(self.theta)} base_config = super(ThresholdedReLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class Softmax(Layer): """Softmax activation function. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments axis: Integer, axis along which the softmax normalization is applied. """ def __init__(self, axis=-1, **kwargs): super(Softmax, self).__init__(**kwargs) self.supports_masking = True self.axis = axis def call(self, inputs): return activations.softmax(inputs, axis=self.axis) def get_config(self): config = {'axis': self.axis} base_config = super(Softmax, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class ReLU(Layer): """Rectified Linear Unit activation function. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments max_value: Float, the maximum output value. """ def __init__(self, max_value=None, **kwargs): super(ReLU, self).__init__(**kwargs) self.supports_masking = True self.max_value = max_value def call(self, inputs): return activations.relu(inputs, max_value=self.max_value) def get_config(self): config = {'max_value': self.max_value} base_config = super(ReLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape