# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Collection of first-party plugins. This module exists to isolate tensorboard.program from the potentially heavyweight build dependencies for first-party plugins. This way people doing custom builds of TensorBoard have the option to only pay for the dependencies they want. This module also grants the flexibility to those doing custom builds, to automatically inherit the centrally-maintained list of standard plugins, for less repetition. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import pkg_resources from tensorboard.backend import experimental_plugin from tensorboard.compat import tf from tensorboard.plugins import base_plugin from tensorboard.plugins.audio import audio_plugin from tensorboard.plugins.beholder import beholder_plugin_loader from tensorboard.plugins.core import core_plugin from tensorboard.plugins.custom_scalar import custom_scalars_plugin from tensorboard.plugins.debugger import debugger_plugin_loader from tensorboard.plugins.debugger_v2 import debugger_v2_plugin from tensorboard.plugins.distribution import distributions_plugin from tensorboard.plugins.graph import graphs_plugin from tensorboard.plugins.histogram import histograms_plugin from tensorboard.plugins.hparams import hparams_plugin from tensorboard.plugins.image import images_plugin from tensorboard.plugins.pr_curve import pr_curves_plugin from tensorboard.plugins.profile_redirect import profile_redirect_plugin from tensorboard.plugins.scalar import scalars_plugin from tensorboard.plugins.text import text_plugin from tensorboard.plugins.mesh import mesh_plugin logger = logging.getLogger(__name__) class ExperimentalDebuggerV2Plugin( debugger_v2_plugin.DebuggerV2Plugin, experimental_plugin.ExperimentalPlugin ): """Debugger v2 plugin marked as experimental.""" pass # Ordering matters. The order in which these lines appear determines the # ordering of tabs in TensorBoard's GUI. _PLUGINS = [ core_plugin.CorePluginLoader, scalars_plugin.ScalarsPlugin, custom_scalars_plugin.CustomScalarsPlugin, ExperimentalDebuggerV2Plugin, images_plugin.ImagesPlugin, audio_plugin.AudioPlugin, debugger_plugin_loader.DebuggerPluginLoader, graphs_plugin.GraphsPlugin, distributions_plugin.DistributionsPlugin, histograms_plugin.HistogramsPlugin, text_plugin.TextPlugin, pr_curves_plugin.PrCurvesPlugin, profile_redirect_plugin.ProfileRedirectPluginLoader, beholder_plugin_loader.BeholderPluginLoader, hparams_plugin.HParamsPlugin, mesh_plugin.MeshPlugin, ] def get_plugins(): """Returns a list specifying TensorBoard's default first-party plugins. Plugins are specified in this list either via a TBLoader instance to load the plugin, or the TBPlugin class itself which will be loaded using a BasicLoader. This list can be passed to the `tensorboard.program.TensorBoard` API. Returns: The list of default plugins. :rtype: list[Type[base_plugin.TBLoader] | Type[base_plugin.TBPlugin]] """ return _PLUGINS[:] def get_dynamic_plugins(): """Returns a list specifying TensorBoard's dynamically loaded plugins. A dynamic TensorBoard plugin is specified using entry_points [1] and it is the robust way to integrate plugins into TensorBoard. This list can be passed to the `tensorboard.program.TensorBoard` API. Returns: The list of dynamic plugins. :rtype: list[Type[base_plugin.TBLoader] | Type[base_plugin.TBPlugin]] [1]: https://packaging.python.org/specifications/entry-points/ """ return [ entry_point.load() for entry_point in pkg_resources.iter_entry_points( "tensorboard_plugins" ) ]