/// \file /// \ingroup tutorial_dataframe /// \notebook -draw /// This tutorial shows the potential of the VecOps approach for treating collections /// stored in datasets, a situation very common in HEP data analysis. /// /// \macro_code /// \macro_image /// /// \date February 2018 /// \author Danilo Piparo using ROOT::RDataFrame; using namespace ROOT::VecOps; int df016_vecOps() { // We re-create a set of points in a square. // This is a technical detail, just to create a dataset to play with! auto unifGen = [](double) { return gRandom->Uniform(-1.0, 1.0); }; auto vGen = [&](int len) { RVec v(len); std::transform(v.begin(), v.end(), v.begin(), unifGen); return v; }; RDataFrame d(1024); auto d0 = d.Define("len", []() { return (int)gRandom->Uniform(0, 16); }) .Define("x", vGen, {"len"}) .Define("y", vGen, {"len"}); // Now we have in hands d, a RDataFrame with two columns, x and y, which // hold collections of coordinates. The size of these collections vary. // Let's now define radii out of x and y. We'll do it treating the collections // stored in the columns without looping on the individual elements. auto d1 = d0.Define("r", "sqrt(x*x + y*y)"); // Now we want to plot 2 quarters of a ring with radii .5 and 1 // Note how the cuts are performed on RVecs, comparing them with integers and // among themselves auto ring_h = d1.Define("rInFig", "r > .4 && r < .8 && x*y < 0") .Define("yFig", "y[rInFig]") .Define("xFig", "x[rInFig]") .Histo2D({"fig", "Two quarters of a ring", 64, -1, 1, 64, -1, 1}, "xFig", "yFig"); auto cring = new TCanvas(); ring_h->DrawCopy("Colz"); return 0; }