## \file ## \ingroup tutorial_dataframe ## \notebook -draw ## This tutorial shows the potential of the VecOps approach for treating collections ## stored in datasets, a situation very common in HEP data analysis. ## ## \macro_image ## \macro_code ## ## \date February 2018 ## \author Danilo Piparo import ROOT df = ROOT.RDataFrame(1024) coordDefineCode = '''ROOT::VecOps::RVec {0}(len); std::transform({0}.begin(), {0}.end(), {0}.begin(), [](double){{return gRandom->Uniform(-1.0, 1.0);}}); return {0};''' d = df.Define("len", "gRandom->Uniform(0, 16)")\ .Define("x", coordDefineCode.format("x"))\ .Define("y", coordDefineCode.format("y")) # Now we have in hands d, a RDataFrame with two columns, x and y, which # hold collections of coordinates. The size of these collections vary. # Let's now define radii out of x and y. We'll do it treating the collections # stored in the columns without looping on the individual elements. d1 = d.Define("r", "sqrt(x*x + y*y)") # Now we want to plot 2 quarters of a ring with radii .5 and 1 # Note how the cuts are performed on RVecs, comparing them with integers and # among themselves ring_h = d1.Define("rInFig", "r > .4 && r < .8 && x*y < 0")\ .Define("yFig", "y[rInFig]")\ .Define("xFig", "x[rInFig]")\ .Histo2D(("fig", "Two quarters of a ring", 64, -1, 1, 64, -1, 1), "xFig", "yFig") cring = ROOT.TCanvas() ring_h.Draw("Colz")