## \file ## \ingroup tutorial_dataframe ## \notebook -draw ## This tutorial is the analysis of the W boson mass taken from the ATLAS Open Data release in 2020 ## (http://opendata.atlas.cern/release/2020/documentation/). The data was recorded with the ATLAS detector ## during 2016 at a center-of-mass energy of 13 TeV. W bosons are produced frequently at the LHC and ## are an important background to studies of Standard Model processes, for example the Higgs boson analyses. ## ## The analysis is translated to a RDataFrame workflow processing a subset of 60 GB of simulated events and data. ## The original analysis is reduced by a factor given as the command line argument --lumi-scale. ## ## \macro_image ## \macro_code ## \macro_output ## ## \date March 2020 ## \author Stefan Wunsch (KIT, CERN) import ROOT import json import argparse import os # Argument parsing parser = argparse.ArgumentParser() parser.add_argument("--lumi-scale", default=0.01, help="Scale of the overall lumi of 10 fb^-1") parser.add_argument("-b", action="store_true", default=False, help="Use ROOT batch mode") args = parser.parse_args() if args.b: ROOT.gROOT.SetBatch(True) # Create a ROOT dataframe for each dataset # Note that we load the filenames from an external json file. path = "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22" files = json.load(open(os.path.join(os.environ["ROOTSYS"], "tutorials/dataframe", "df105_WBosonAnalysis.json"))) processes = files.keys() df = {} xsecs = {} sumws = {} samples = [] for p in processes: for d in files[p]: # Construct the dataframes folder = d[0] # Folder name sample = d[1] # Sample name xsecs[sample] = d[2] # Cross-section sumws[sample] = d[3] # Sum of weights num_events = d[4] # Number of events samples.append(sample) df[sample] = ROOT.RDataFrame("mini", "{}/1lep/{}/{}.1lep.root".format(path, folder, sample)) # Scale down the datasets df[sample] = df[sample].Range(int(num_events * args.lumi_scale)) # Select events for the analysis ROOT.gInterpreter.Declare(""" bool GoodElectronOrMuon(int type, float pt, float eta, float phi, float e, float trackd0pv, float tracksigd0pv, float z0) { ROOT::Math::PtEtaPhiEVector p(pt / 1000.0, eta, phi, e / 1000.0); if (abs(z0 * sin(p.theta())) > 0.5) return false; if (type == 11 && abs(eta) < 2.46 && (abs(eta) < 1.37 || abs(eta) > 1.52)) { if (abs(trackd0pv / tracksigd0pv) > 5) return false; return true; } if (type == 13 && abs(eta) < 2.5) { if (abs(trackd0pv / tracksigd0pv) > 3) return false; return true; } return false; } """) for s in samples: # Require missing transverse energy larger than 30 GeV df[s] = df[s].Filter("met_et > 30000") # Select electron or muon trigger df[s] = df[s].Filter("trigE || trigM") # Select events with exactly one good lepton df[s] = df[s].Define("good_lep", "lep_isTightID && lep_pt > 35000 && lep_ptcone30 / lep_pt < 0.1 && lep_etcone20 / lep_pt < 0.1")\ .Filter("Sum(good_lep) == 1") # Apply additional cuts in case the lepton is an electron or muon df[s] = df[s].Define("idx", "ROOT::VecOps::ArgMax(good_lep)")\ .Filter("GoodElectronOrMuon(lep_type[idx], lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx], lep_trackd0pvunbiased[idx], lep_tracksigd0pvunbiased[idx], lep_z0[idx])") # Apply luminosity, scale factors and MC weights for simulated events lumi = 10064.0 for s in samples: if "data" in s: df[s] = df[s].Define("weight", "1.0") else: df[s] = df[s].Define("weight", "scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * scaleFactor_PILEUP * mcWeight * {} / {} * {}".format(xsecs[s], sumws[s], lumi)) # Compute transverse mass of the W boson using the lepton and the missing transverse energy and make a histogram ROOT.gInterpreter.Declare(""" float ComputeTransverseMass(float met_et, float met_phi, float lep_pt, float lep_eta, float lep_phi, float lep_e) { ROOT::Math::PtEtaPhiEVector met(met_et, 0, met_phi, met_et); ROOT::Math::PtEtaPhiEVector lep(lep_pt, lep_eta, lep_phi, lep_e); return (met + lep).Mt() / 1000.0; } """) histos = {} for s in samples: df[s] = df[s].Define("mt_w", "ComputeTransverseMass(met_et, met_phi, lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx])") histos[s] = df[s].Histo1D(ROOT.RDF.TH1DModel(s, "mt_w", 40, 60, 180), "mt_w", "weight") # Run the event loop and merge histograms of the respective processes def merge_histos(label): h = None for i, d in enumerate(files[label]): t = histos[d[1]].GetValue() if i == 0: h = t.Clone() else: h.Add(t) h.SetNameTitle(label, label) return h data = merge_histos("data") wjets = merge_histos("wjets") zjets = merge_histos("zjets") ttbar = merge_histos("ttbar") diboson = merge_histos("diboson") singletop = merge_histos("singletop") # Create the plot # Set styles ROOT.gROOT.SetStyle("ATLAS") # Create canvas with pad c = ROOT.TCanvas("c", "", 600, 600) pad = ROOT.TPad("upper_pad", "", 0, 0, 1, 1) pad.SetTickx(False) pad.SetTicky(False) pad.SetLogy() pad.Draw() pad.cd() # Draw stack with MC contributions stack = ROOT.THStack() for h, color in zip( [singletop, diboson, ttbar, zjets, wjets], [(208, 240, 193), (195, 138, 145), (155, 152, 204), (248, 206, 104), (222, 90, 106)]): h.SetLineWidth(1) h.SetLineColor(1) h.SetFillColor(ROOT.TColor.GetColor(*color)) stack.Add(h) stack.Draw("HIST") stack.GetXaxis().SetLabelSize(0.04) stack.GetXaxis().SetTitleSize(0.045) stack.GetXaxis().SetTitleOffset(1.3) stack.GetXaxis().SetTitle("m_{T}^{W#rightarrow l#nu} [GeV]") stack.GetYaxis().SetTitle("Events") stack.GetYaxis().SetLabelSize(0.04) stack.GetYaxis().SetTitleSize(0.045) stack.SetMaximum(1e10 * args.lumi_scale) stack.SetMinimum(1e1) # Draw data data.SetMarkerStyle(20) data.SetMarkerSize(1.2) data.SetLineWidth(2) data.SetLineColor(ROOT.kBlack) data.Draw("E SAME") # Add legend legend = ROOT.TLegend(0.60, 0.65, 0.92, 0.92) legend.SetTextFont(42) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextSize(0.04) legend.SetTextAlign(32) legend.AddEntry(data, "Data" ,"lep") legend.AddEntry(wjets, "W+jets", "f") legend.AddEntry(zjets, "Z+jets", "f") legend.AddEntry(ttbar, "t#bar{t}", "f") legend.AddEntry(diboson, "Diboson", "f") legend.AddEntry(singletop, "Single top", "f") legend.Draw("SAME") # Add ATLAS label text = ROOT.TLatex() text.SetNDC() text.SetTextFont(72) text.SetTextSize(0.045) text.DrawLatex(0.21, 0.86, "ATLAS") text.SetTextFont(42) text.DrawLatex(0.21 + 0.16, 0.86, "Open Data") text.SetTextSize(0.04) text.DrawLatex(0.21, 0.80, "#sqrt{{s}} = 13 TeV, {:.1f} fb^{{-1}}".format(lumi * args.lumi_scale / 1000.0)) # Save the plot c.SaveAs("WBosonAnalysis.pdf")