/// \file /// \ingroup tutorial_fit /// \notebook -nodraw /// Example on how to use the new Minimizer class in ROOT /// Show usage with all the possible minimizers. /// Minimize the Rosenbrock function (a 2D -function) /// This example is described also in /// http://root.cern.ch/drupal/content/numerical-minimization#multidim_minim /// input : minimizer name + algorithm name /// randomSeed: = <0 : fixed value: 0 random with seed 0; >0 random with given seed /// /// \macro_code /// /// \author Lorenzo Moneta #include "Math/Minimizer.h" #include "Math/Factory.h" #include "Math/Functor.h" #include "TRandom2.h" #include "TError.h" #include double RosenBrock(const double *xx ) { const Double_t x = xx[0]; const Double_t y = xx[1]; const Double_t tmp1 = y-x*x; const Double_t tmp2 = 1-x; return 100*tmp1*tmp1+tmp2*tmp2; } int NumericalMinimization(const char * minName = "Minuit2", const char *algoName = "" , int randomSeed = -1) { // create minimizer giving a name and a name (optionally) for the specific // algorithm // possible choices are: // minName algoName // Minuit /Minuit2 Migrad, Simplex,Combined,Scan (default is Migrad) // Minuit2 Fumili2 // Fumili // GSLMultiMin ConjugateFR, ConjugatePR, BFGS, // BFGS2, SteepestDescent // GSLMultiFit // GSLSimAn // Genetic ROOT::Math::Minimizer* minimum = ROOT::Math::Factory::CreateMinimizer(minName, algoName); // set tolerance , etc... minimum->SetMaxFunctionCalls(1000000); // for Minuit/Minuit2 minimum->SetMaxIterations(10000); // for GSL minimum->SetTolerance(0.001); minimum->SetPrintLevel(1); // create function wrapper for minimizer // a IMultiGenFunction type ROOT::Math::Functor f(&RosenBrock,2); double step[2] = {0.01,0.01}; // starting point double variable[2] = { -1.,1.2}; if (randomSeed >= 0) { TRandom2 r(randomSeed); variable[0] = r.Uniform(-20,20); variable[1] = r.Uniform(-20,20); } minimum->SetFunction(f); // Set the free variables to be minimized ! minimum->SetVariable(0,"x",variable[0], step[0]); minimum->SetVariable(1,"y",variable[1], step[1]); // do the minimization minimum->Minimize(); const double *xs = minimum->X(); std::cout << "Minimum: f(" << xs[0] << "," << xs[1] << "): " << minimum->MinValue() << std::endl; // expected minimum is 0 if ( minimum->MinValue() < 1.E-4 && f(xs) < 1.E-4) std::cout << "Minimizer " << minName << " - " << algoName << " converged to the right minimum" << std::endl; else { std::cout << "Minimizer " << minName << " - " << algoName << " failed to converge !!!" << std::endl; Error("NumericalMinimization","fail to converge"); } return 0; }