/// \file /// \ingroup tutorial_fit /// \notebook /// /// Example to fit two histograms at the same time via TVirtualFitter /// /// To execute this tutorial, you can do: /// /// ~~~{.cpp} /// root > .x fit2dHist.C (executing via CINT, slow) /// ~~~ /// /// or /// ~~~{.cpp} /// root > .x fit2dHist.C+ (executing via ACLIC , fast, with Minuit) /// root > .x fit2dHist.C+(2) (executing via ACLIC , fast, with Minuit2) /// ~~~ /// /// or using the option to fit independently the 2 histos /// ~~~{.cpp} /// root > .x fit2dHist.C+(10) (via ACLIC, fast, independent fits with Minuit) /// root > .x fit2dHist.C+(12) (via ACLIC, fast, independent fits with Minuit2) /// ~~~ /// /// Note that you can also execute this script in batch with eg, /// ~~~{.cpp} /// root -b -q "fit2dHist.C+(12)" /// ~~~ /// /// or execute interactively from the shell /// ~~~{.cpp} /// root fit2dHist.C+ /// root "fit2dHist.C+(12)" /// ~~~ /// /// \macro_image /// \macro_output /// \macro_code /// /// \authors: Lorenzo Moneta, Rene Brun 18/01/2006 #include "TH2D.h" #include "TF2.h" #include "TCanvas.h" #include "TStyle.h" #include "TRandom3.h" #include "TVirtualFitter.h" #include "TList.h" #include double gauss2D(double *x, double *par) { double z1 = double((x[0]-par[1])/par[2]); double z2 = double((x[1]-par[3])/par[4]); return par[0]*exp(-0.5*(z1*z1+z2*z2)); } double my2Dfunc(double *x, double *par) { return gauss2D(x,&par[0]) + gauss2D(x,&par[5]); } // data need to be globals to be visible by fcn TRandom3 rndm; TH2D *h1, *h2; Int_t npfits; void myFcn(Int_t & /*nPar*/, Double_t * /*grad*/ , Double_t &fval, Double_t *p, Int_t /*iflag */ ) { TAxis *xaxis1 = h1->GetXaxis(); TAxis *yaxis1 = h1->GetYaxis(); TAxis *xaxis2 = h2->GetXaxis(); TAxis *yaxis2 = h2->GetYaxis(); int nbinX1 = h1->GetNbinsX(); int nbinY1 = h1->GetNbinsY(); int nbinX2 = h2->GetNbinsX(); int nbinY2 = h2->GetNbinsY(); double chi2 = 0; double x[2]; double tmp; npfits = 0; for (int ix = 1; ix <= nbinX1; ++ix) { x[0] = xaxis1->GetBinCenter(ix); for (int iy = 1; iy <= nbinY1; ++iy) { if ( h1->GetBinError(ix,iy) > 0 ) { x[1] = yaxis1->GetBinCenter(iy); tmp = (h1->GetBinContent(ix,iy) - my2Dfunc(x,p))/h1->GetBinError(ix,iy); chi2 += tmp*tmp; npfits++; } } } for (int ix = 1; ix <= nbinX2; ++ix) { x[0] = xaxis2->GetBinCenter(ix); for (int iy = 1; iy <= nbinY2; ++iy) { if ( h2->GetBinError(ix,iy) > 0 ) { x[1] = yaxis2->GetBinCenter(iy); tmp = (h2->GetBinContent(ix,iy) - my2Dfunc(x,p))/h2->GetBinError(ix,iy); chi2 += tmp*tmp; npfits++; } } } fval = chi2; } void FillHisto(TH2D * h, int n, double * p) { const double mx1 = p[1]; const double my1 = p[3]; const double sx1 = p[2]; const double sy1 = p[4]; const double mx2 = p[6]; const double my2 = p[8]; const double sx2 = p[7]; const double sy2 = p[9]; //const double w1 = p[0]*sx1*sy1/(p[5]*sx2*sy2); const double w1 = 0.5; double x, y; for (int i = 0; i < n; ++i) { // generate randoms with larger gaussians rndm.Rannor(x,y); double r = rndm.Rndm(1); if (r < w1) { x = x*sx1 + mx1; y = y*sy1 + my1; } else { x = x*sx2 + mx2; y = y*sy2 + my2; } h->Fill(x,y); } } int fit2dHist(int option=1) { // create two histograms int nbx1 = 50; int nby1 = 50; int nbx2 = 50; int nby2 = 50; double xlow1 = 0.; double ylow1 = 0.; double xup1 = 10.; double yup1 = 10.; double xlow2 = 5.; double ylow2 = 5.; double xup2 = 20.; double yup2 = 20.; h1 = new TH2D("h1","core",nbx1,xlow1,xup1,nby1,ylow1,yup1); h2 = new TH2D("h2","tails",nbx2,xlow2,xup2,nby2,ylow2,yup2); double iniParams[10] = { 100, 6., 2., 7., 3, 100, 12., 3., 11., 2. }; // create fit function TF2 * func = new TF2("func",my2Dfunc,xlow2,xup2,ylow2,yup2, 10); func->SetParameters(iniParams); // fill Histos int n1 = 1000000; int n2 = 1000000; FillHisto(h1,n1,iniParams); FillHisto(h2,n2,iniParams); // scale histograms to same heights (for fitting) double dx1 = (xup1-xlow1)/double(nbx1); double dy1 = (yup1-ylow1)/double(nby1); double dx2 = (xup2-xlow2)/double(nbx2); double dy2 = (yup2-ylow2)/double(nby2); // scale histo 2 to scale of 1 h2->Sumw2(); h2->Scale( ( double(n1) * dx1 * dy1 ) / ( double(n2) * dx2 * dy2 ) ); bool global = false; if (option > 10) global = true; if (global) { // fill data structure for fit (coordinates + values + errors) std::cout << "Do global fit" << std::endl; // fit now all the function together //The default minimizer is Minuit, you can also try Minuit2 if (option%10 == 2) TVirtualFitter::SetDefaultFitter("Minuit2"); else TVirtualFitter::SetDefaultFitter("Minuit"); TVirtualFitter * minuit = TVirtualFitter::Fitter(0,10); for (int i = 0; i < 10; ++i) { minuit->SetParameter(i, func->GetParName(i), func->GetParameter(i), 0.01, 0,0); } minuit->SetFCN(myFcn); double arglist[100]; arglist[0] = 0; // set print level minuit->ExecuteCommand("SET PRINT",arglist,2); // minimize arglist[0] = 5000; // number of function calls arglist[1] = 0.01; // tolerance minuit->ExecuteCommand("MIGRAD",arglist,2); //get result double minParams[10]; double parErrors[10]; for (int i = 0; i < 10; ++i) { minParams[i] = minuit->GetParameter(i); parErrors[i] = minuit->GetParError(i); } double chi2, edm, errdef; int nvpar, nparx; minuit->GetStats(chi2,edm,errdef,nvpar,nparx); func->SetParameters(minParams); func->SetParErrors(parErrors); func->SetChisquare(chi2); int ndf = npfits-nvpar; func->SetNDF(ndf); // add to list of functions h1->GetListOfFunctions()->Add(func); h2->GetListOfFunctions()->Add(func); } else { // fit independently h1->Fit(func); h2->Fit(func); } // Create a new canvas. TCanvas * c1 = new TCanvas("c1","Two HIstogram Fit example",100,10,900,800); c1->Divide(2,2); gStyle->SetOptFit(); gStyle->SetStatY(0.6); c1->cd(1); h1->Draw(); func->SetRange(xlow1,ylow1,xup1,yup1); func->DrawCopy("cont1 same"); c1->cd(2); h1->Draw("lego"); func->DrawCopy("surf1 same"); c1->cd(3); func->SetRange(xlow2,ylow2,xup2,yup2); h2->Draw(); func->DrawCopy("cont1 same"); c1->cd(4); h2->Draw("lego"); gPad->SetLogz(); func->Draw("surf1 same"); return 0; }