/// \file /// \ingroup tutorial_hist /// Evaluate the performance of THnSparse vs TH1/2/3/nF /// for different numbers of dimensions and bins per dimension. /// /// The script calculates the bandwidth for filling and retrieving /// bin contents (in million entries per second) for these two /// histogramming techniques, where "seconds" is CPU and real time. /// /// The first line of the plots contains the bandwidth based on the /// CPU time (THnSpase, TH1/2/3/nF*, ratio), the second line shows /// the plots for real time, and the third line shows the fraction of /// filled bins and memory used by THnSparse vs. TH1/2/3/nF. /// /// The timing depends on the distribution and the amount of entries /// in the histograms; here, a Gaussian distribution (center is /// contained in the histograms) is used to fill each histogram with /// 1000 entries. The filling and reading is repeated until enough /// statistics have been collected. /// /// tutorials/tree/drawsparse.C shows an example for visualizing a /// THnSparse. It creates a TTree which is then drawn using /// TParallelCoord. /// /// This macro should be run in compiled mode due to the many nested /// loops that force CINT to disable its optimization. If run /// interpreted one would not benchmark THnSparse but CINT. /// /// Run as: /// ~~~{.cpp} /// root[0] .L $ROOTSYS/tutorials/hist/sparsehist.C+ /// root[1] sparsehist() /// ~~~ /// /// \macro_code /// /// \author Axel.Naumann #include "TH1.h" #include "TH2.h" #include "TH3.h" #include "THn.h" #include "THnSparse.h" #include "TStopwatch.h" #include "TRandom.h" #include "TCanvas.h" #include "TFile.h" #include "TStyle.h" #include "TSystem.h" #ifndef INT_MAX #define INT_MAX std::numeric_limits::max() #endif class TTimeHists { public: enum EHist { kHist, kSparse, kNumHist }; enum ETime { kReal, kCPU, kNumTime }; TTimeHists(Int_t dim, Int_t bins, Long_t num): fValue(0), fDim(dim), fBins(bins), fNum(num), fSparse(0), fHist(0), fHn(0) {} ~TTimeHists(); bool Run(); Double_t GetTime(EHist hist, ETime time) const { if (time == kReal) return fTime[hist][0]; return fTime[hist][1]; } static void SetDebug(Int_t lvl) { fgDebug = lvl; } THnSparse* GetSparse() const { return fSparse; } protected: void Fill(EHist hist); Double_t Check(EHist hist); void SetupHist(EHist hist); void NextValues(); void SetupValues(); private: Double_t* fValue; Int_t fDim; Int_t fBins; Long_t fNum; Double_t fTime[2][2]; THnSparse* fSparse; TH1* fHist; THn* fHn; static Int_t fgDebug; }; Int_t TTimeHists::fgDebug = 0; TTimeHists::~TTimeHists() { delete [] fValue; delete fSparse; delete fHist; delete fHn; } bool TTimeHists::Run() { // run all tests with current settings, and check for identity of content. Double_t check[2]; Long64_t rep[2]; for (int h = 0; h < 2; ++h) { rep[h] = 0; SetupValues(); try { TStopwatch w; w.Start(); SetupHist((EHist) h); w.Stop(); do { w.Start(kFALSE); Fill((EHist) h); check[h] = Check((EHist) h); w.Stop(); ++rep[h]; } while ((!h && w.RealTime() < 0.1) || (h && rep[0] > 0 && rep[1] < rep[0])); fTime[h][0] = (1.* fNum * rep[h]) / w.RealTime() / 1E6; fTime[h][1] = (1.* fNum * rep[h]) / w.CpuTime() / 1E6; if (h == 1 && (fTime[h][0] > 1E20 || fTime[h][1] > 1E20)) { do { // some more cycles: w.Start(kFALSE); Fill((EHist) h); Check((EHist) h); w.Stop(); ++rep[h]; } while (w.RealTime() < 0.1); fTime[h][0] = (1.* fNum * rep[h]) / w.RealTime() / 1E6; fTime[h][1] = (1.* fNum * rep[h]) / w.CpuTime() / 1E6; } if (fTime[h][0] > 1E20) fTime[h][0] = 1E20; if (fTime[h][1] > 1E20) fTime[h][1] = 1E20; } catch (std::exception&) { fTime[h][0] = fTime[h][1] = -1.; check[h] = -1.; // can never be < 1 without exception rep[h] = -1; } } if (check[0] != check[1]) if (check[0] != -1.) printf("ERROR: mismatch of histogram (%g) and sparse histogram (%g) for dim=%d, bins=%d!\n", check[0], check[1], fDim, fBins); // else // printf("ERROR: cannot allocate histogram for dim=%d, bins=%d - out of memory!\n", // fDim, fBins); return (check[0] == check[1]); } void TTimeHists::NextValues() { for (Int_t d = 0; d < fDim; ++d) fValue[d] = gRandom->Gaus() / 4.; } void TTimeHists::SetupValues() { // define fValue if (!fValue) fValue = new Double_t[fDim]; gRandom->SetSeed(42); } void TTimeHists::Fill(EHist hist) { for (Long_t n = 0; n < fNum; ++n) { NextValues(); if (fgDebug > 1) { printf("%ld: fill %s", n, hist == kHist? (fDim < 4 ? "hist" : "arr") : "sparse"); for (Int_t d = 0; d < fDim; ++d) printf("[%g]", fValue[d]); printf("\n"); } if (hist == kHist) { switch (fDim) { case 1: fHist->Fill(fValue[0]); break; case 2: ((TH2F*)fHist)->Fill(fValue[0], fValue[1]); break; case 3: ((TH3F*)fHist)->Fill(fValue[0], fValue[1], fValue[2]); break; default: fHn->Fill(fValue); break; } } else { fSparse->Fill(fValue); } } } void TTimeHists::SetupHist(EHist hist) { if (hist == kHist) { switch (fDim) { case 1: fHist = new TH1F("h1", "h1", fBins, -1., 1.); break; case 2: fHist = new TH2F("h2", "h2", fBins, -1., 1., fBins, -1., 1.); break; case 3: fHist = new TH3F("h3", "h3", fBins, -1., 1., fBins, -1., 1., fBins, -1., 1.); break; default: { MemInfo_t meminfo; gSystem->GetMemInfo(&meminfo); Int_t size = 1; for (Int_t d = 0; d < fDim; ++d) { if ((Int_t)(size * sizeof(Float_t)) > INT_MAX / (fBins + 2) || (meminfo.fMemFree > 0 && meminfo.fMemFree / 2 < (Int_t) (size * sizeof(Float_t)/1000/1000))) throw std::bad_alloc(); size *= (fBins + 2); } if (meminfo.fMemFree > 0 && meminfo.fMemFree / 2 < (Int_t) (size * sizeof(Float_t)/1000/1000)) throw std::bad_alloc(); Int_t* bins = new Int_t[fDim]; Double_t *xmin = new Double_t[fDim]; Double_t *xmax = new Double_t[fDim]; for (Int_t d = 0; d < fDim; ++d) { bins[d] = fBins; xmin[d] = -1.; xmax[d] = 1.; } fHn = new THnF("hn", "hn", fDim, bins, xmin, xmax); } } } else { Int_t* bins = new Int_t[fDim]; Double_t *xmin = new Double_t[fDim]; Double_t *xmax = new Double_t[fDim]; for (Int_t d = 0; d < fDim; ++d) { bins[d] = fBins; xmin[d] = -1.; xmax[d] = 1.; } fSparse = new THnSparseF("hs", "hs", fDim, bins, xmin, xmax); } } Double_t TTimeHists::Check(EHist hist) { // Check bin content of all bins Double_t check = 0.; Int_t* x = new Int_t[fDim]; memset(x, 0, sizeof(Int_t) * fDim); if (hist == kHist) { Long_t idx = 0; Long_t size = 1; for (Int_t d = 0; d < fDim; ++d) size *= (fBins + 2); while (x[0] <= fBins + 1) { Double_t v = -1.; if (fDim < 4) { Long_t histidx = x[0]; if (fDim == 2) histidx = fHist->GetBin(x[0], x[1]); else if (fDim == 3) histidx = fHist->GetBin(x[0], x[1], x[2]); v = fHist->GetBinContent(histidx); } else v = fHn->GetBinContent(x); Double_t checkx = 0.; if (v) for (Int_t d = 0; d < fDim; ++d) checkx += x[d]; check += checkx * v; if (fgDebug > 2 || (fgDebug > 1 && v)) { printf("%s%d", fDim < 4 ? "hist" : "arr", fDim); for (Int_t d = 0; d < fDim; ++d) printf("[%d]", x[d]); printf(" = %g\n", v); } ++x[fDim - 1]; // Adjust the bin idx // no wrapping for dim 0 - it's what we break on! for (Int_t d = fDim - 1; d > 0; --d) { if (x[d] > fBins + 1) { x[d] = 0; ++x[d - 1]; } } ++idx; } // while next bin } else { for (Long64_t i = 0; i < fSparse->GetNbins(); ++i) { Double_t v = fSparse->GetBinContent(i, x); Double_t checkx = 0.; for (Int_t d = 0; d < fDim; ++d) checkx += x[d]; check += checkx * v; if (fgDebug > 1) { printf("sparse%d", fDim); for (Int_t d = 0; d < fDim; ++d) printf("[%d]", x[d]); printf(" = %g\n", v); } } } check /= fNum; if (fgDebug > 0) printf("check %s%d = %g\n", hist == kHist ? (fDim < 4 ? "hist" : "arr") : "sparse", fDim, check); return check; } void sparsehist() { // Exclude this macro also for Cling as this script requires exception support // which is not supported in Cling as of v6.00/00. #if defined (__CLING__) printf("Please run this script in compiled mode by running \".x sparsehist.C+\"\n"); return; #endif TH2F* htime[TTimeHists::kNumHist][TTimeHists::kNumTime]; for (int h = 0; h < TTimeHists::kNumHist; ++h) for (int t = 0; t < TTimeHists::kNumTime; ++t) { TString name("htime_"); if (h == 0) name += "arr"; else name += "sp"; if (t == 0) name += "_r"; TString title; title.Form("Throughput (fill,get) %s (%s, 1M entries/sec);dim;bins;1M entries/sec", h == 0 ? "TH1/2/3/nF" : "THnSparseF", t == 0 ? "real" : "CPU"); htime[h][t] = new TH2F(name, title, 6, 0.5, 6.5, 10, 5, 105); } TH2F* hsparse_mem = new TH2F("hsparse_mem", "Fractional memory usage;dim;bins;fraction of memory used", 6, 0.5, 6.5, 10, 5, 105); TH2F* hsparse_bins = new TH2F("hsparse_bins", "Fractional number of used bins;dim;bins;fraction of filled bins", 6, 0.5, 6.5, 10, 5, 105); // TTimeHists::SetDebug(2); Double_t max = -1.; for (Int_t dim = 1; dim < 7; ++dim) { printf("Processing dimension %d", dim); for (Int_t bins = 10; bins <= 100; bins += 10) { TTimeHists timer(dim, bins, /*num*/ 1000); timer.Run(); for (int h = 0; h < TTimeHists::kNumHist; ++h) { for (int t = 0; t < TTimeHists::kNumTime; ++t) { Double_t time = timer.GetTime((TTimeHists::EHist)h, (TTimeHists::ETime)t); if (time >= 0.) htime[h][t]->Fill(dim, bins, time); } } hsparse_mem->Fill(dim, bins, timer.GetSparse()->GetSparseFractionMem()); hsparse_bins->Fill(dim, bins, timer.GetSparse()->GetSparseFractionBins()); if (max < timer.GetTime(TTimeHists::kSparse, TTimeHists::kReal)) max = timer.GetTime(TTimeHists::kSparse, TTimeHists::kReal); printf("."); fflush(stdout); } printf(" done\n"); } Double_t markersize = 2.5; hsparse_mem->SetMarkerSize(markersize); hsparse_bins->SetMarkerSize(markersize); TH2F* htime_ratio[TTimeHists::kNumTime]; for (int t = 0; t < TTimeHists::kNumTime; ++t) { const char* name = t ? "htime_ratio" : "htime_ratio_r"; htime_ratio[t] = (TH2F*) htime[TTimeHists::kSparse][t]->Clone(name); TString title; title.Form("Relative speed improvement (%s, 1M entries/sec): sparse/hist;dim;bins;#Delta 1M entries/sec", t == 0 ? "real" : "CPU"); htime_ratio[t]->SetTitle(title); htime_ratio[t]->Divide(htime[TTimeHists::kHist][t]); htime_ratio[t]->SetMinimum(0.1); htime_ratio[t]->SetMarkerSize(markersize); } TFile* f = new TFile("sparsehist.root","RECREATE"); TCanvas* canv= new TCanvas("c","c"); canv->Divide(3,3); gStyle->SetPalette(8,0); gStyle->SetPaintTextFormat(".2g"); gStyle->SetOptStat(0); const char* opt = "TEXT COL"; for (int t = 0; t < TTimeHists::kNumTime; ++t) { for (int h = 0; h < TTimeHists::kNumHist; ++h) { htime[h][t]->SetMaximum(max); htime[h][t]->SetMarkerSize(markersize); canv->cd(1 + h + 3 * t); htime[h][t]->Draw(opt); htime[h][t]->Write(); } canv->cd(3 + t * 3); htime_ratio[t]->Draw(opt); gPad->SetLogz(); htime_ratio[t]->Write(); } canv->cd(7); hsparse_mem->Draw(opt); canv->cd(8); hsparse_bins->Draw(opt); hsparse_mem->Write(); hsparse_bins->Write(); canv->Write(); delete f; }