/// \file /// \ingroup tutorial_roofit /// \notebook -js /// /// Basic functionality: interpreted functions and p.d.f.s /// /// \macro_image /// \macro_output /// \macro_code /// /// \date 07/2008 /// \author Wouter Verkerke #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "TCanvas.h" #include "TAxis.h" #include "RooPlot.h" #include "RooFitResult.h" #include "RooGenericPdf.h" #include "RooConstVar.h" using namespace RooFit; void rf103_interprfuncs() { // ---------------------------------------------------- // G e n e r i c i n t e r p r e t e d p . d . f . // ==================================================== // Declare observable x RooRealVar x("x", "x", -20, 20); // C o n s t r u c t g e n e r i c p d f f r o m i n t e r p r e t e d e x p r e s s i o n // ------------------------------------------------------------------------------------------------- // To construct a proper p.d.f, the formula expression is explicitly normalized internally by dividing // it by a numeric integral of the expression over x in the range [-20,20] // RooRealVar alpha("alpha", "alpha", 5, 0.1, 10); RooGenericPdf genpdf("genpdf", "genpdf", "(1+0.1*abs(x)+sin(sqrt(abs(x*alpha+0.1))))", RooArgSet(x, alpha)); // S a m p l e , f i t a n d p l o t g e n e r i c p d f // --------------------------------------------------------------- // Generate a toy dataset from the interpreted p.d.f RooDataSet *data = genpdf.generate(x, 10000); // Fit the interpreted p.d.f to the generated data genpdf.fitTo(*data); // Make a plot of the data and the p.d.f overlaid RooPlot *xframe = x.frame(Title("Interpreted expression pdf")); data->plotOn(xframe); genpdf.plotOn(xframe); // ----------------------------------------------------------------------------------------------------------- // S t a n d a r d p . d . f a d j u s t w i t h i n t e r p r e t e d h e l p e r f u n c t i o n // ========================================================================================================== // Make a gauss(x,sqrt(mean2),sigma) from a standard RooGaussian // C o n s t r u c t s t a n d a r d p d f w i t h f o r m u l a r e p l a c i n g p a r a m e t e r // ------------------------------------------------------------------------------------------------------------ // Construct parameter mean2 and sigma RooRealVar mean2("mean2", "mean^2", 10, 0, 200); RooRealVar sigma("sigma", "sigma", 3, 0.1, 10); // Construct interpreted function mean = sqrt(mean^2) RooFormulaVar mean("mean", "mean", "sqrt(mean2)", mean2); // Construct a gaussian g2(x,sqrt(mean2),sigma) ; RooGaussian g2("g2", "h2", x, mean, sigma); // G e n e r a t e t o y d a t a // --------------------------------- // Construct a separate gaussian g1(x,10,3) to generate a toy Gaussian dataset with mean 10 and width 3 RooGaussian g1("g1", "g1", x, RooConst(10), RooConst(3)); RooDataSet *data2 = g1.generate(x, 1000); // F i t a n d p l o t t a i l o r e d s t a n d a r d p d f // ------------------------------------------------------------------- // Fit g2 to data from g1 RooFitResult *r = g2.fitTo(*data2, Save()); r->Print(); // Plot data on frame and overlay projection of g2 RooPlot *xframe2 = x.frame(Title("Tailored Gaussian pdf")); data2->plotOn(xframe2); g2.plotOn(xframe2); // Draw all frames on a canvas TCanvas *c = new TCanvas("rf103_interprfuncs", "rf103_interprfuncs", 800, 400); c->Divide(2); c->cd(1); gPad->SetLeftMargin(0.15); xframe->GetYaxis()->SetTitleOffset(1.4); xframe->Draw(); c->cd(2); gPad->SetLeftMargin(0.15); xframe2->GetYaxis()->SetTitleOffset(1.4); xframe2->Draw(); }