/// \file /// \ingroup tutorial_roofit /// \notebook -js /// /// Addition and convolution: setting up an extended maximum likelihood fit /// /// \macro_image /// \macro_output /// \macro_code /// /// \date 07/2008 /// \author Wouter Verkerke #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooChebychev.h" #include "RooAddPdf.h" #include "RooExtendPdf.h" #include "TCanvas.h" #include "TAxis.h" #include "RooPlot.h" using namespace RooFit; void rf202_extendedmlfit() { // S e t u p c o m p o n e n t p d f s // --------------------------------------- // Declare observable x RooRealVar x("x", "x", 0, 10); // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters RooRealVar mean("mean", "mean of gaussians", 5); RooRealVar sigma1("sigma1", "width of gaussians", 0.5); RooRealVar sigma2("sigma2", "width of gaussians", 1); RooGaussian sig1("sig1", "Signal component 1", x, mean, sigma1); RooGaussian sig2("sig2", "Signal component 2", x, mean, sigma2); // Build Chebychev polynomial p.d.f. RooRealVar a0("a0", "a0", 0.5, 0., 1.); RooRealVar a1("a1", "a1", 0.2, 0., 1.); RooChebychev bkg("bkg", "Background", x, RooArgSet(a0, a1)); // Sum the signal components into a composite signal p.d.f. RooRealVar sig1frac("sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.); RooAddPdf sig("sig", "Signal", RooArgList(sig1, sig2), sig1frac); //---------------- // M E T H O D 1 //================ // C o n s t r u c t e x t e n d e d c o m p o s i t e m o d e l // ------------------------------------------------------------------- // Sum the composite signal and background into an extended pdf nsig*sig+nbkg*bkg RooRealVar nsig("nsig", "number of signal events", 500, 0., 10000); RooRealVar nbkg("nbkg", "number of background events", 500, 0, 10000); RooAddPdf model("model", "(g1+g2)+a", RooArgList(bkg, sig), RooArgList(nbkg, nsig)); // S a m p l e , f i t a n d p l o t e x t e n d e d m o d e l // --------------------------------------------------------------------- // Generate a data sample of expected number events in x from model // = model.expectedEvents() = nsig+nbkg RooDataSet *data = model.generate(x); // Fit model to data, extended ML term automatically included model.fitTo(*data); // Plot data and PDF overlaid, use expected number of events for p.d.f projection normalization // rather than observed number of events (==data->numEntries()) RooPlot *xframe = x.frame(Title("extended ML fit example")); data->plotOn(xframe); model.plotOn(xframe, Normalization(1.0, RooAbsReal::RelativeExpected)); // Overlay the background component of model with a dashed line model.plotOn(xframe, Components(bkg), LineStyle(kDashed), Normalization(1.0, RooAbsReal::RelativeExpected)); // Overlay the background+sig2 components of model with a dotted line model.plotOn(xframe, Components(RooArgSet(bkg, sig2)), LineStyle(kDotted), Normalization(1.0, RooAbsReal::RelativeExpected)); // Print structure of composite p.d.f. model.Print("t"); //---------------- // M E T H O D 2 //================ // C o n s t r u c t e x t e n d e d c o m p o n e n t s f i r s t // --------------------------------------------------------------------- // Associated nsig/nbkg as expected number of events with sig/bkg RooExtendPdf esig("esig", "extended signal p.d.f", sig, nsig); RooExtendPdf ebkg("ebkg", "extended background p.d.f", bkg, nbkg); // S u m e x t e n d e d c o m p o n e n t s w i t h o u t c o e f s // ------------------------------------------------------------------------- // Construct sum of two extended p.d.f. (no coefficients required) RooAddPdf model2("model2", "(g1+g2)+a", RooArgList(ebkg, esig)); // Draw the frame on the canvas new TCanvas("rf202_composite", "rf202_composite", 600, 600); gPad->SetLeftMargin(0.15); xframe->GetYaxis()->SetTitleOffset(1.4); xframe->Draw(); }