## \file ## \ingroup tutorial_roofit ## \notebook -nodraw ## ## Data and categories: latex printing of lists and sets of RooArgSets ## ## \macro_code ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Setup composite pdf # -------------------------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 10) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and # their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Sum the signal components into a composite signal p.d.f. sig1frac = ROOT.RooRealVar( "sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.) sig = ROOT.RooAddPdf( "sig", "Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac)) # Build Chebychev polynomial p.d.f. a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.) a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0., 1.) bkg1 = ROOT.RooChebychev("bkg1", "Background 1", x, ROOT.RooArgList(a0, a1)) # Build expontential pdf alpha = ROOT.RooRealVar("alpha", "alpha", -1) bkg2 = ROOT.RooExponential("bkg2", "Background 2", x, alpha) # Sum the background components into a composite background p.d.f. bkg1frac = ROOT.RooRealVar( "sig1frac", "fraction of component 1 in background", 0.2, 0., 1.) bkg = ROOT.RooAddPdf( "bkg", "Signal", ROOT.RooArgList(bkg1, bkg2), ROOT.RooArgList(sig1frac)) # Sum the composite signal and background bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0., 1.) model = ROOT.RooAddPdf( "model", "g1+g2+a", ROOT.RooArgList(bkg, sig), ROOT.RooArgList(bkgfrac)) # Make list of parameters before and after fit # ---------------------------------------------------------------------------------------- # Make list of model parameters params = model.getParameters(ROOT.RooArgSet(x)) # Save snapshot of prefit parameters initParams = params.snapshot() # Do fit to data, obtain error estimates on parameters data = model.generate(ROOT.RooArgSet(x), 1000) model.fitTo(data) # Print LateX table of parameters of pdf # -------------------------------------------------------------------------- # Print parameter list in LaTeX for (one column with names, column with # values) params.printLatex() # Print parameter list in LaTeX for (names values|names values) params.printLatex(ROOT.RooFit.Columns(2)) # Print two parameter lists side by side (name values initvalues) params.printLatex(ROOT.RooFit.Sibling(initParams)) # Print two parameter lists side by side (name values initvalues|name # values initvalues) params.printLatex(ROOT.RooFit.Sibling(initParams), ROOT.RooFit.Columns(2)) # Write LaTex table to file params.printLatex(ROOT.RooFit.Sibling(initParams), ROOT.RooFit.OutputFile("rf407_latextables.tex"))