/// \file /// \ingroup tutorial_roofit /// \notebook -nodraw /// /// Likelihood and minimization: setting up a chi^2 fit to a binned dataset /// /// \macro_output /// \macro_code /// /// \date 07/2008 /// \author Wouter Verkerke #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooChebychev.h" #include "RooAddPdf.h" #include "RooChi2Var.h" #include "TCanvas.h" #include "TAxis.h" #include "RooPlot.h" using namespace RooFit; void rf602_chi2fit() { // S e t u p m o d e l // --------------------- // Declare observable x RooRealVar x("x", "x", 0, 10); // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters RooRealVar mean("mean", "mean of gaussians", 5); RooRealVar sigma1("sigma1", "width of gaussians", 0.5); RooRealVar sigma2("sigma2", "width of gaussians", 1); RooGaussian sig1("sig1", "Signal component 1", x, mean, sigma1); RooGaussian sig2("sig2", "Signal component 2", x, mean, sigma2); // Build Chebychev polynomial p.d.f. RooRealVar a0("a0", "a0", 0.5, 0., 1.); RooRealVar a1("a1", "a1", 0.2, 0., 1.); RooChebychev bkg("bkg", "Background", x, RooArgSet(a0, a1)); // Sum the signal components into a composite signal p.d.f. RooRealVar sig1frac("sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.); RooAddPdf sig("sig", "Signal", RooArgList(sig1, sig2), sig1frac); // Sum the composite signal and background RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.); RooAddPdf model("model", "g1+g2+a", RooArgList(bkg, sig), bkgfrac); // C r e a t e b i n n e d d a t a s e t // ----------------------------------------- RooDataSet *d = model.generate(x, 10000); RooDataHist *dh = d->binnedClone(); // Construct a chi^2 of the data and the model. // When a p.d.f. is used in a chi^2 fit, the probability density scaled // by the number of events in the dataset to obtain the fit function // If model is an extended p.d.f, the expected number events is used // instead of the observed number of events. model.chi2FitTo(*dh); // NB: It is also possible to fit a RooAbsReal function to a RooDataHist // using chi2FitTo(). // Note that entries with zero bins are _not_ allowed // for a proper chi^2 calculation and will give error // messages RooDataSet *dsmall = (RooDataSet *)d->reduce(EventRange(1, 100)); RooDataHist *dhsmall = dsmall->binnedClone(); RooChi2Var chi2_lowstat("chi2_lowstat", "chi2", model, *dhsmall); cout << chi2_lowstat.getVal() << endl; }