/// \file /// \ingroup tutorial_tmva /// \notebook -nodraw /// This exectutable gives an example of a very simple use of the genetic algorithm /// of TMVA. /// - Project : TMVA - a Root-integrated toolkit for multivariate data analysis /// - Package : TMVA /// - Exectuable: TMVAGAexample /// /// \macro_output /// \macro_code /// \author Andreas Hoecker #include // Stream declarations #include #include "TMVA/GeneticAlgorithm.h" #include "TMVA/GeneticFitter.h" #include "TMVA/IFitterTarget.h" using namespace std; namespace TMVA { class MyFitness : public IFitterTarget { public: MyFitness() : IFitterTarget() { } // the fitness-function goes here // the factors are optimized such that the return-value of this function is minimized // take care!! the fitness-function must never fail, .. means: you have to prevent // the function from reaching undefined values (such as x=0 for 1/x or so) // // HINT: to use INTEGER variables, it is sufficient to cast the "factor" in the fitness-function // to (int). In this case the variable-range has to be chosen +1 ( to get 0..5, take Interval(0,6) ) // since the introduction of "Interval" ranges can be defined with a third parameter // which gives the number of bins within the interval. With that technique discrete values // can be achieved easier. The random selection out of this discrete numbers is completly uniform. // Double_t EstimatorFunction( std::vector & factors ){ //return (10.- (int)factors.at(0) *factors.at(1) + (int)factors.at(2)); return (10.- factors.at(0) *factors.at(1) + factors.at(2)); //return 100.- (10 + factors.at(1)) *factors.at(2)* TMath::Abs( TMath::Sin(factors.at(0)) ); } }; void exampleGA(){ std::cout << "\nEXAMPLE" << std::endl; // define all the parameters by their minimum and maximum value // in this example 3 parameters are defined. vector ranges; ranges.push_back( new Interval(0,15,30) ); ranges.push_back( new Interval(0,13) ); ranges.push_back( new Interval(0,5,3) ); for( std::vector::iterator it = ranges.begin(); it != ranges.end(); it++ ){ std::cout << " range: " << (*it)->GetMin() << " " << (*it)->GetMax() << std::endl; } IFitterTarget* myFitness = new MyFitness(); // prepare the genetic algorithm with an initial population size of 20 // mind: big population sizes will help in searching the domain space of the solution // but you have to weight this out to the number of generations // the extreme case of 1 generation and populationsize n is equal to // a Monte Carlo calculation with n tries const TString name( "exampleGA" ); const TString opts( "PopSize=100:Steps=30" ); GeneticFitter mg( *myFitness, name, ranges, opts); // mg.SetParameters( 4, 30, 200, 10,5, 0.95, 0.001 ); std::vector result; Double_t estimator = mg.Run(result); int n = 0; for( std::vector::iterator it = result.begin(); it