/// \file /// \ingroup tutorial_tmva /// \notebook -nodraw /// This macro provides examples for the training and testing of the /// TMVA classifiers. /// /// As input data is used a toy-MC sample consisting of four Gaussian-distributed /// and linearly correlated input variables. /// /// The methods to be used can be switched on and off by means of booleans, or /// via the prompt command, for example: /// /// root -l TMVARegression.C\(\"LD,MLP\"\) /// /// (note that the backslashes are mandatory) /// If no method given, a default set is used. /// /// The output file "TMVAReg.root" can be analysed with the use of dedicated /// macros (simply say: root -l ), which can be conveniently /// invoked through a GUI that will appear at the end of the run of this macro. /// - Project : TMVA - a Root-integrated toolkit for multivariate data analysis /// - Package : TMVA /// - Root Macro: TMVARegression /// /// \macro_output /// \macro_code /// \author Andreas Hoecker #include #include #include #include #include "TChain.h" #include "TFile.h" #include "TTree.h" #include "TString.h" #include "TObjString.h" #include "TSystem.h" #include "TROOT.h" #include "TMVA/Tools.h" #include "TMVA/Factory.h" #include "TMVA/DataLoader.h" #include "TMVA/TMVARegGui.h" using namespace TMVA; void TMVARegression( TString myMethodList = "" ) { // The explicit loading of the shared libTMVA is done in TMVAlogon.C, defined in .rootrc // if you use your private .rootrc, or run from a different directory, please copy the // corresponding lines from .rootrc // methods to be processed can be given as an argument; use format: // // mylinux~> root -l TMVARegression.C\(\"myMethod1,myMethod2,myMethod3\"\) // //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map Use; // Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 0; Use["PDEFoam"] = 1; Use["KNN"] = 1; // // Linear Discriminant Analysis Use["LD"] = 1; // // Function Discriminant analysis Use["FDA_GA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; // // Neural Network Use["MLP"] = 0; #ifdef R__HAS_TMVACPU Use["DNN_CPU"] = 1; #else Use["DNN_CPU"] = 0; #endif // // Support Vector Machine Use["SVM"] = 0; // // Boosted Decision Trees Use["BDT"] = 0; Use["BDTG"] = 1; // --------------------------------------------------------------- std::cout << std::endl; std::cout << "==> Start TMVARegression" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " "; std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // Here the preparation phase begins // Create a new root output file TString outfileName( "TMVAReg.root" ); TFile* outputFile = TFile::Open( outfileName, "RECREATE" ); // Create the factory object. Later you can choose the methods // whose performance you'd like to investigate. The factory will // then run the performance analysis for you. // // The first argument is the base of the name of all the // weightfiles in the directory weight/ // // The second argument is the output file for the training results // All TMVA output can be suppressed by removing the "!" (not) in // front of the "Silent" argument in the option string TMVA::Factory *factory = new TMVA::Factory( "TMVARegression", outputFile, "!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression" ); TMVA::DataLoader *dataloader=new TMVA::DataLoader("dataset"); // If you wish to modify default settings // (please check "src/Config.h" to see all available global options) // // (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0; // (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory"; // Define the input variables that shall be used for the MVA training // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)" // [all types of expressions that can also be parsed by TTree::Draw( "expression" )] dataloader->AddVariable( "var1", "Variable 1", "units", 'F' ); dataloader->AddVariable( "var2", "Variable 2", "units", 'F' ); // You can add so-called "Spectator variables", which are not used in the MVA training, // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the // input variables, the response values of all trained MVAs, and the spectator variables dataloader->AddSpectator( "spec1:=var1*2", "Spectator 1", "units", 'F' ); dataloader->AddSpectator( "spec2:=var1*3", "Spectator 2", "units", 'F' ); // Add the variable carrying the regression target dataloader->AddTarget( "fvalue" ); // It is also possible to declare additional targets for multi-dimensional regression, ie: // factory->AddTarget( "fvalue2" ); // BUT: this is currently ONLY implemented for MLP // Read training and test data (see TMVAClassification for reading ASCII files) // load the signal and background event samples from ROOT trees TFile *input(0); TString fname = "./tmva_reg_example.root"; if (!gSystem->AccessPathName( fname )) { input = TFile::Open( fname ); // check if file in local directory exists } else { TFile::SetCacheFileDir("."); input = TFile::Open("http://root.cern.ch/files/tmva_reg_example.root", "CACHEREAD"); // if not: download from ROOT server } if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVARegression : Using input file: " << input->GetName() << std::endl; // Register the regression tree TTree *regTree = (TTree*)input->Get("TreeR"); // global event weights per tree (see below for setting event-wise weights) Double_t regWeight = 1.0; // You can add an arbitrary number of regression trees dataloader->AddRegressionTree( regTree, regWeight ); // This would set individual event weights (the variables defined in the // expression need to exist in the original TTree) dataloader->SetWeightExpression( "var1", "Regression" ); // Apply additional cuts on the signal and background samples (can be different) TCut mycut = ""; // for example: TCut mycut = "abs(var1)<0.5 && abs(var2-0.5)<1"; // tell the DataLoader to use all remaining events in the trees after training for testing: dataloader->PrepareTrainingAndTestTree( mycut, "nTrain_Regression=1000:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" ); // // dataloader->PrepareTrainingAndTestTree( mycut, // "nTrain_Regression=0:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" ); // If no numbers of events are given, half of the events in the tree are used // for training, and the other half for testing: // // dataloader->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" ); // Book MVA methods // // Please lookup the various method configuration options in the corresponding cxx files, eg: // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html // it is possible to preset ranges in the option string in which the cut optimisation should be done: // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable // PDE - RS method if (Use["PDERS"]) factory->BookMethod( dataloader, TMVA::Types::kPDERS, "PDERS", "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" ); // And the options strings for the MinMax and RMS methods, respectively: // // "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" ); // "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" ); if (Use["PDEFoam"]) factory->BookMethod( dataloader, TMVA::Types::kPDEFoam, "PDEFoam", "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" ); // K-Nearest Neighbour classifier (KNN) if (Use["KNN"]) factory->BookMethod( dataloader, TMVA::Types::kKNN, "KNN", "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" ); // Linear discriminant if (Use["LD"]) factory->BookMethod( dataloader, TMVA::Types::kLD, "LD", "!H:!V:VarTransform=None" ); // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA) if (Use["FDA_MC"]) factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MC", "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" ); if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options) .. the formula of this example is good for parabolas factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GA", "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" ); if (Use["FDA_MT"]) factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MT", "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" ); if (Use["FDA_GAMT"]) factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GAMT", "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" ); // Neural network (MLP) if (Use["MLP"]) factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" ); if (Use["DNN_CPU"]) { TString layoutString("Layout=TANH|50,TANH|50,TANH|50,LINEAR"); TString trainingStrategyString("TrainingStrategy="); trainingStrategyString +="LearningRate=1e-3,Momentum=0.3,ConvergenceSteps=20,BatchSize=50,TestRepetitions=1,WeightDecay=0.0,Regularization=None,Optimizer=Adam"; TString nnOptions("!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU"); nnOptions.Append(":"); nnOptions.Append(layoutString); nnOptions.Append(":"); nnOptions.Append(trainingStrategyString); factory->BookMethod(dataloader, TMVA::Types::kDL, "DNN_CPU", nnOptions); // NN } // Support Vector Machine if (Use["SVM"]) factory->BookMethod( dataloader, TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" ); // Boosted Decision Trees if (Use["BDT"]) factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=100:MinNodeSize=1.0%:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" ); if (Use["BDTG"]) factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=3:MaxDepth=4" ); // -------------------------------------------------------------------------------------------------- // Now you can tell the factory to train, test, and evaluate the MVAs // Train MVAs using the set of training events factory->TrainAllMethods(); // Evaluate all MVAs using the set of test events factory->TestAllMethods(); // Evaluate and compare performance of all configured MVAs factory->EvaluateAllMethods(); // -------------------------------------------------------------- // Save the output outputFile->Close(); std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl; std::cout << "==> TMVARegression is done!" << std::endl; delete factory; delete dataloader; // Launch the GUI for the root macros if (!gROOT->IsBatch()) TMVA::TMVARegGui( outfileName ); } int main( int argc, char** argv ) { // Select methods (don't look at this code - not of interest) TString methodList; for (int i=1; i