C 19/10/85 603241822 MEMBER NAME TYPDCY (FORT) FORTRAN77 C SUBROUTINE TYPDCY(RMASS,AMN,AMM1,AMM2,PN,PM1,PM2,NDIS,KIN1,KIN2) C C DETERMINE THE FOLLOWING KINEMATICS DECAYED FROM N(1440,1535,1710) C --> modified to consider only N(1535) C C AMN : NUCLEON MASS, AMM1 : MESON MASS(1), AMM2 : MESON MASS(2) C PN : " MOM., PM1 : " MOM.(1), PM2 : " MOM.(2) C -- C.M.S. OF RMASS SYSTEM C KIN1,KIM2 kind of particle Cccccc NDIS : DISAPPER OR NOT C C INPUT : RMASS - RESONANCE MASS C C T.KAJITA 19-OCT-85 C J.KAMEDA 1997.11. C DIMENSION DIR(3), DRTEMP(3) DIMENSION PN(3), PM1(3), PM2(3) DIMENSION BR1(10),BR2(10),BR3(10),BR4(10) INTEGER NDIS C DATA BR1 / 0.35 ,0.42 , 0.1 ,0.2 , 0., 0., 0., 0., 0., 0./ DATA BR2 / 0.333 ,0.333 , 1.0 ,0.0 , 0., 0., 0., 0., 0., 0./ DATA BR3 / 1. ,6. , 8. ,9. , 0., 0., 0., 0., 0., 0./ DATA BR4 / 0.33 ,0.67 , 1.0 ,0. , 0., 0., 0., 0., 0., 0./ NDIS = 0 C BRANCHING RATIO N-ETA, N-PAI, DELTA-PAI, N-ROU C C C N(1535) C 110 RAN=RNDM(DUM) 110 RAN=RLU(IDUM) IF( BR1(1).GT.RAN) GO TO 500 IF( (BR1(1)+BR1(2)).GT.RAN) GO TO 1000 IF( (BR1(1)+BR1(2)+BR1(3)).GT.RAN) GO TO 2000 GO TO 3000 C C C I) N+ETA 500 AMN=939. AMM1=550. AMM2=140. KIN1 = 221 kIN2 = 0 NDIS = 0 CALL DCY2BD(RMASS, AMN, AMM1, P1) CALL RNDIR(DIR) DO 510 K=1,3 PN(K)=P1*DIR(K) PM1(K)=-P1*DIR(K) PM2(K)=0. 510 CONTINUE RETURN C C C I) N+PAI 1000 AMN=939. AMM1=140. AMM2=140. NDIS = 1 KIN2 = 0 CALL DCY2BD(RMASS, AMN, AMM1, P1) CALL RNDIR(DIR) DO 1010 K=1,3 PN(K)=P1*DIR(K) PM1(K)=-P1*DIR(K) PM2(K)=0. 1010 CONTINUE C rnkind = rndm(dum) rnkind = RLU(idum) IF( (BR2(1)+BR2(2)).LE.RNKIND) KIN1 = -211 IF( (BR2(1)+BR2(2)).GT.RNKIND) KIN1 = 211 IF( BR2(1).GT.RNKIND) KIN1 = 111 RETURN C C C II) DELTA+PAI 2000 AMN=939. AMM1=140. AMM2=140. NDIS = 2 2020 DEMASS=RSMASS(RMASS,1232.,AMM2,115.) IF ( DEMASS.LE.(AMN+AMM1+1.) ) GO TO 2020 IF ( DEMASS.GE.(RMASS-AMM1-1.) ) GO TO 2020 CALL DCY2BD(RMASS, AMM1, DEMASS, P2) CALL RNDIR(DIR) DO 2010 K=1,3 PM2(K)=-P2*DIR(K) DRTEMP(K)=DIR(K) 2010 CONTINUE BETA = SQRT ( P2**2/(P2**2+DEMASS**2) ) GAM=GAMFCT(BETA) C C DECAY OF DELTA CALL DCY2BD(DEMASS, AMN, AMM1, P22) CALL RNDIR(DIR) PN(1)=DIR(1)*P22 PN(2)=DIR(2)*P22 PN(3)=DIR(3)*P22 C PM1(1)=-DIR(1)*P22 PM1(2)=-DIR(2)*P22 PM1(3)=-DIR(3)*P22 CALL MCVECBST(PM1, AMM1, DRTEMP, GAM) CALL MCVECBST(PN, AMN, DRTEMP, GAM) cccc particle ID C rnkind = rndm(dum)*9.0 rnkind = RLU(idum)*9.0 IF( BR3(3).LE.RNKIND) then KIN1 = 111 KIN2 = -211 endif IF( BR3(3).GT.RNKIND) then KIN1 = 111 KIN2 = 111 endif IF( BR3(2).GT.RNKIND) then KIN1 = 211 KIN2 = -211 endif IF( BR3(1).GT.RNKIND) then KIN1 = 211 KIN2 = 111 endif RETURN C C III) N+RHO 3000 AMN=939. AMM1=140. AMM2=140. NDIS = 3 3020 RHMASS=RSMASS(RMASS,769.,AMN,154.) IF ( RHMASS.LT.(AMM1+AMM2+1.) ) GO TO 3020 IF ( RHMASS.GT.(RMASS-AMN-1.) ) GO TO 3020 CALL DCY2BD(RMASS, AMN, RHMASS, P3) CALL RNDIR(DIR) DO 3010 K=1,3 PN(K)=-P3*DIR(K) DRTEMP(K)=DIR(K) 3010 CONTINUE BETA = SQRT ( P3**2/(P3**2+RHMASS**2) ) GAM=GAMFCT(BETA) C C DECAY OF RHO CALL DCY2BD(RHMASS, 140., 140., P32) CALL RNDIR(DIR) PM1(1)=DIR(1)*P32 PM1(2)=DIR(2)*P32 PM1(3)=DIR(3)*P32 C PM2(1)=-DIR(1)*P32 PM2(2)=-DIR(2)*P32 PM2(3)=-DIR(3)*P32 CALL MCVECBST(PM1, AMM1, DRTEMP, GAM) CALL MCVECBST(PM2, AMM2, DRTEMP, GAM) C ccc particle ID C rnkind = rndm(dum) rnkind = rlu(idum) IF( BR4(2).LE.RNKIND) then KIN1 = 111 KIN2 = -211 endif IF( BR4(2).GT.RNKIND) then KIN1 = 211 KIN2 = -211 endif IF( BR4(1).GT.RNKIND) then KIN1 = 211 KIN2 = 111 endif RETURN END