{+ file: gradient_map.inp +} {+ directory: xtal_refine +} {+ description: Make a gradient electron density map +} {+ authors: Axel T. Brunger and Paul D. Adams +} {+ copyright: Yale University +} {+ reference: R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986) +} {+ reference: G.J. Kleywegt and A.T. Brunger, Checking your imagination: Applications of the free R value, Structure 4, 897-904 (1996) +} {+ reference: A.T. Brunger, P.D. Adams and L.M. Rice, New applications of simulated annealing in X-ray crystallography and solution NMR, Structure 5, 325-336, (1997) +} {- Guidelines for using this file: - all strings must be quoted by double-quotes - logical variables (true/false) must not be quoted - do not remove any evaluate statements from the file -} {- begin block parameter definition -} define( {============================ coordinates ============================} {* coordinate file *} {===>} coordinate_infile="amy.pdb"; {==================== molecular information ==========================} {* topology files *} {===>} topology_infile_1="CNS_TOPPAR:protein.top"; {===>} topology_infile_2="CNS_TOPPAR:dna-rna.top"; {===>} topology_infile_3="CNS_TOPPAR:water.top"; {===>} topology_infile_4="CNS_TOPPAR:ion.top"; {===>} topology_infile_5="CNS_TOPPAR:carbohydrate.top"; {===>} topology_infile_6=""; {===>} topology_infile_7=""; {===>} topology_infile_8=""; {* linkage files for linear, continuous polymers (protein, DNA, RNA) *} {===>} link_infile_1="CNS_TOPPAR:protein.link"; {===>} link_infile_2="CNS_TOPPAR:dna-rna-pho.link"; {===>} link_infile_3=""; {* parameter files *} {===>} parameter_infile_1="CNS_TOPPAR:protein_rep.param"; {===>} parameter_infile_2="CNS_TOPPAR:dna-rna_rep.param"; {===>} parameter_infile_3="CNS_TOPPAR:water_rep.param"; {===>} parameter_infile_4="CNS_TOPPAR:ion.param"; {===>} parameter_infile_5="CNS_TOPPAR:carbohydrate.param"; {===>} parameter_infile_6=""; {===>} parameter_infile_7=""; {===>} parameter_infile_8=""; {* molecular topology file: optional (leave blank for auto generation) *} {* Auto generation of the molecular topology from the coordinates should only be used if: (1) Each distinct protein, DNA, or RNA chain must have a separate segid (or chainid if the chainid is non-blank). (2) Each contiguous protein, RNA, or RNA chain must not be disrupted by other types of residues or ligands. Rather, these other residues should be listed after protein, RNA/DNA chains. (3) Disulphides are automatically detected based on distances between the sulfur atoms (must be less than 3 A apart). (4) Broken protein/RNA/DNA chains without terminii must be more than 2.5 A apart to be recognized as such. (5) N-linked glycan links are automatically recognized if the bonded atoms are less than 2.5 A apart. (6) Automatic generation cannot be used with alternate conformations. For ligands, the user must make suitable topology and parameter files. For non-standard covalent linkages, the custom patch file should be used. Alternatively, the generate.inp or generate_easy.inp task files can be used to generated the mtf prior to running this task file. *} {===>} structure_infile="amy.mtf"; {* for auto generation: extra linkages and modifications by custom patches *} {===>} patch_infile=""; {====================== crystallographic data ========================} {* space group *} {* use International Table conventions with subscripts substituted by parenthesis *} {===>} sg="P2(1)2(1)2(1)"; {* unit cell parameters in Angstroms and degrees *} {+ table: rows=1 "cell" cols=6 "a" "b" "c" "alpha" "beta" "gamma" +} {===>} a=61.76; {===>} b=40.73; {===>} c=26.74; {===>} alpha=90; {===>} beta=90; {===>} gamma=90; {* anomalous f' f'' library file *} {* If a file is not specified, no anomalous contribution will be included *} {+ choice: "CNS_XRAYLIB:anom_cu.lib" "CNS_XRAYLIB:anom_mo.lib" "" user_file +} {===>} anom_library=""; {* reflection files *} {* specify non-anomalous reflection files before anomalous reflection files. *} {* files must contain unique array names otherwise errors will occur *} {===>} reflection_infile_1="amy.cv"; {===>} reflection_infile_2=""; {===>} reflection_infile_3=""; {===>} reflection_infile_4=""; {* reciprocal space array containing observed amplitudes: required *} {===>} obs_f="fobs"; {* reciprocal space array containing sigma values for amplitudes: required *} {===>} obs_sigf="sigma"; {* reciprocal space array containing test set for cross-validation: required for calculation of cross-validated sigmaA values *} {===>} test_set="test"; {* number for selection of test reflections: required for cross-validation *} {* ie. reflections with the test set array equal to this number will be used for cross-validation, all other reflections form the working set *} {===>} test_flag=1; {* reciprocal space array containing weighting scheme for observed amplitudes: optional *} {* only used for the "residual" and "vector" targets - this will default to a constant value of 1 if array is not present *} {===>} obs_w=""; {* reciprocal space array containing observed intensities: optional *} {* required for the "mli" target *} {===>} obs_i=""; {* reciprocal space array containing sigma values for intensities: optional *} {* required for the "mli" target *} {===>} obs_sigi=""; {* reciprocal space arrays with experimental phase probability distribution: optional *} {* Hendrickson-Lattman coefficients A,B,C,D *} {* required for the "mlhl" target and phase combined or observed maps *} {+ table: rows=1 "HL coefficients" cols=4 "A" "B" "C" "D" +} {===>} obs_pa=""; {===>} obs_pb=""; {===>} obs_pc=""; {===>} obs_pd=""; {* complex reciprocal space array containing experimental phases: optional *} {* required for the "mixed" and "vector" targets *} {===>} obs_phase=""; {* reciprocal space array containing experimental figures of merit: optional *} {* required for the "mixed" target *} {===>} obs_fom=""; {* resolution limits for data included in map calculation *} {* all data available should be included in the map calculation *} {+ table: rows=1 "resolution" cols=2 "lowest" "highest" +} {===>} low_res=500.0; {===>} high_res=2.0; {* apply rejection criteria to amplitudes or intensities *} {+ choice: "amplitude" "intensity" +} {===>} obs_type="amplitude"; {* Observed data cutoff criteria: applied to amplitudes or intensities *} {* reflections with magnitude(Obs)/sigma < cutoff are rejected. *} {===>} sigma_cut=0.0; {* rms outlier cutoff: applied to amplitudes or intensities *} {* reflections with magnitude(Obs) > cutoff*rms(Obs) will be rejected *} {===>} obs_rms=10000; {=================== non-crystallographic symmetry ===================} {* NCS-restraints/constraints file *} {* see auxiliary/ncs.def *} {===>} ncs_infile=""; {============ overall B-factor and bulk solvent corrections ==========} {* overall B-factor correction *} {+ choice: "no" "isotropic" "anisotropic" +} {===>} bscale="anisotropic"; {* bulk solvent correction *} {* a mask is required around the molecule(s). The region outside this mask is the solvent region *} {+ choice: true false +} {===>} bulk_sol=true; {* bulk solvent mask file *} {* mask will be read from O type mask file if a name is given otherwise calculated from coordinates of selected atoms *} {===>} bulk_mask_infile=""; {* automatic bulk solvent parameter optimization for e-density level sol_k (e/A^3) and B-factor sol_b (A^2) *} {+ choice: true false +} {===>} sol_auto=true; {* fixed solvent parameters (used if the automatic option is turned off) *} {+ table: rows=1 "bulk solvent" cols=2 "e-density level sol_k (e/A^3)" "B-factor sol_b (A^2) " +} {===>} sol_k=0.3; {===>} sol_b=50.0; {* optional file with a listing of the results of the automatic bulk solvent optimization *} {===>} sol_output=""; {* solvent mask parameters *} {+ table: rows=1 "bulk solvent" cols=2 "probe radius (A) (usually set to 1)" "shrink radius (A) (usually set to 1)" +} {===>} sol_rad=1.0; {===>} sol_shrink=1.0; {========================== atom selection ===========================} {* select atoms to be included in map calculation *} {===>} atom_select=(known and not hydrogen); {==================== map generation parameters ======================} {* refinement target *} {+ list: mlf: maximum likelihood target using amplitudes mli: maximum likelihood target using intensities mlhl: maximum likelihood target using amplitudes and phase probability distribution residual: standard crystallographic residual vector: vector residual mixed: (1-fom)*residual + fom*vector e2e2: correlation coefficient using normalized E^2 e1e1: correlation coefficient using normalized E f2f2: correlation coefficient using F^2 f1f1: correlation coefficient using F +} {+ choice: "mlf" "mli" "mlhl" "residual" "vector" "mixed" "e2e2" "e1e1" "f2f2" "f1f1" +} {===>} reftarget="mlf"; {* number of bins for refinement target *} {* this will be determined automatically if a negative value is given otherwise the specified number of bins will be used *} {===>} target_bins=-1; {* use model amplitudes for unmeasured data *} {* this will not be applied to gradient or difference maps *} {+ choice: true false +} {===>} fill_in=false; {* scale map by dividing by the rms sigma of the map *} {* otherwise map will be on an absolute fobs scale *} {+ choice: true false +} {===>} map_scale=true; {* map format *} {+ choice: "cns" "ezd" +} {===>} map_format="cns"; {* b-factor sharpening (A^2), for example, -100 *} {===>} bsharp=0; {* map grid size: dmin*grid *} {* use grid=0.25 for better map appearance *} {===>} grid=0.33; {* memory allocation for FFT calculation *} {* this will be determined automatically if a negative value is given otherwise the specified number of words will be allocated *} {===>} fft_memory=-1; {* extent of map *} {+ choice: "molecule" "asymmetric" "unit" "box" "fract" +} {===>} map_mode="molecule"; {* select atoms around which map will be written *} {* change if different to atoms selected for map calculation *} {===>} atom_map=(known and not hydrogen); {* cushion (in Angstroms) around selected atoms in "molecule" mode *} {===>} map_cushion=3.0; {* limits in orthogonal angstroms for box mode or fractional coordinates for fract mode *} {+ table: rows=3 "x" "y" "z" cols=2 "minimum" "maximum" +} {===>} xmin=0.; {===>} xmax=0.; {===>} ymin=0.; {===>} ymax=0.; {===>} zmin=0.; {===>} zmax=0.; {=========================== output files ============================} {* root name for output files *} {+ list: map file will be in: .map positive peaks in: _positive.peaks negative peaks in: _negative.peaks Fourier coefficients will be in: .hkl +} {===>} output_root="gradient_map"; {* write map file *} {+ choice: true false +} {===>} write_map=true; {* do peak picking on map *} {* optional - use water_pick.inp to pick waters *} {+ choice: true false +} {===>} peak_search=true; {* number of peaks to pick from map *} {===>} peak_num=30; {* write a reflection file with the Fourier coefficients of the map *} {+ list: arrays written: map_coeff: Fourier map coefficients - map=ft(map_coeff) +} {+ choice: true false +} {===>} write_coeff=true; {===========================================================================} { things below this line do not normally need to be changed } {===========================================================================} ) {- end block parameter definition -} checkversion 1.3 evaluate ($log_level=quiet) if ( $log_level = verbose ) then set message=normal echo=on end else set message=off echo=off end end if if ( &BLANK%structure_infile = true ) then {- read topology files -} topology evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then @@&topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end @CNS_XTALMODULE:mtfautogenerate ( coordinate_infile=&coordinate_infile; convert=true; separate=true; atom_delete=(not known); hydrogen_flag=true; break_cutoff=2.5; disulphide_dist=3.0; carbo_dist=2.5; patch_infile=&patch_infile; O5_becomes="O"; ) else structure @&structure_infile end coordinates @&coordinate_infile end if {- read parameter files -} parameter evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then @@¶meter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end set message=normal echo=on end xray @CNS_XTALLIB:spacegroup.lib (sg=&sg;sgparam=$sgparam;) a=&a b=&b c=&c alpha=&alpha beta=&beta gamma=&gamma @CNS_XRAYLIB:scatter.lib binresolution &low_res &high_res mapresolution &high_res generate &low_res &high_res evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then reflection @@&reflection_infile_$counter end end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end if ( &BLANK%anom_library = false ) then @@&anom_library else set echo=off end xray anomalous=? end if ( $result = true ) then display Warning: no anomalous library has been specified display no anomalous contribution will used in refinement end if set echo=on end end if {- copy define parameters of optional arrays into symbols so we can redefine them -} evaluate ($obs_i=&obs_i) evaluate ($obs_sigi=&obs_sigi) evaluate ($obs_w=&obs_w) xray @@CNS_XTALMODULE:checkrefinput ( reftarget=&reftarget; obs_f=&obs_f; obs_sigf=&obs_sigf; test_set=&test_set; obs_pa=&obs_pa; obs_pb=&obs_pb; obs_pc=&obs_pc; obs_pd=&obs_pd; obs_phase=&obs_phase; obs_fom=&obs_fom; obs_w=$obs_w; obs_i=$obs_i; obs_sigi=$obs_sigi; ) query name=fcalc domain=reciprocal end if ( $object_exist = false ) then declare name=fcalc domain=reciprocal type=complex end end if declare name=fbulk domain=reciprocal type=complex end do (fbulk=0) ( all ) query name=&STRIP%obs_f domain=reciprocal end declare name=fobs_orig domain=reciprocal type=$object_type end declare name=sigma_orig domain=reciprocal type=real end do (fobs_orig=&STRIP%obs_f) (all) do (sigma_orig=&STRIP%obs_sigf) (all) if ( &BLANK%obs_i = false ) then query name=&STRIP%obs_i domain=reciprocal end declare name=iobs_orig domain=reciprocal type=$object_type end declare name=sigi_orig domain=reciprocal type=real end do (iobs_orig=&STRIP%obs_i) (all) do (sigi_orig=&STRIP%obs_sigi) (all) end if if ( &obs_type = "intensity" ) then if ( &BLANK%obs_i = true ) then display Error: observed intensity array is undefined display aborting script abort end if evaluate ($reject_obs=&obs_i) evaluate ($reject_sig=&obs_sigi) else evaluate ($reject_obs=&obs_f) evaluate ($reject_sig=&obs_sigf) end if declare name=ref_active domain=reciprocal type=integer end declare name=tst_active domain=reciprocal type=integer end do (ref_active=0) ( all ) do (ref_active=1) ( ( $STRIP%reject_sig # 0 ) and ( &low_res >= d >= &high_res ) ) statistics overall completeness selection=( ref_active=1 ) end evaluate ($total_compl=$expression1) show sum(1) ( ref_active=1 ) evaluate ($total_read=$select) evaluate ($total_theor=int(1./$total_compl * $total_read)) show rms (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_high=$result*&obs_rms) show min (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_low=$result) do (ref_active=0) ( all ) do (ref_active=1) ( ( amplitude($STRIP%reject_obs) > &sigma_cut*$STRIP%reject_sig ) and ( $STRIP%reject_sig # 0 ) and ( $obs_low <= amplitude($STRIP%reject_obs) <= $obs_high ) and ( &low_res >= d >= &high_res ) ) do (tst_active=0) (all) if ( &BLANK%test_set = false ) then do (tst_active=1) (ref_active=1 and &STRIP%test_set=&test_flag) end if show sum(1) ( ref_active=1 and tst_active=0 ) evaluate ($total_work=$select) show sum(1) ( ref_active=1 and tst_active=1 ) evaluate ($total_test=$select) evaluate ($total_used=$total_work+$total_test) evaluate ($unobserved=$total_theor-$total_read) evaluate ($rejected=$total_read-$total_used) evaluate ($per_unobs=100*($unobserved/$total_theor)) evaluate ($per_reject=100*($rejected/$total_theor)) evaluate ($per_used=100*($total_used/$total_theor)) evaluate ($per_work=100*($total_work/$total_theor)) evaluate ($per_test=100*($total_test/$total_theor)) associate fcalc ( &atom_select ) tselection=( ref_active=1 ) cvselection=( tst_active=1 ) method=FFT end show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=&grid; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) xray tolerance=0.0 lookup=false end if ( &reftarget = "mlhl" ) then evalaute ($test_hl=true) elseif ( &reftarget = "vector" ) then evalaute ($test_hl=true) elseif ( &reftarget = "combined" ) then evalaute ($test_hl=true) else evalaute ($test_hl=false) end if if ( $test_hl = true ) then xray @@CNS_XTALMODULE:check_abcd (pa=&obs_pa; pb=&obs_pb; pc=&obs_pc; pd=&obs_pd;) end end if if ( &BLANK%ncs_infile = false ) then inline @&ncs_infile end if xray declare name=dtarg domain=reciprocal type=complex end declare name=total domain=reciprocal type=complex end declare name=fmap domain=reciprocal type=complex end end xray do (&STRIP%obs_f=fobs_orig) (all) do (&STRIP%obs_sigf=sigma_orig) (all) if ( &BLANK%obs_i = false ) then do (&STRIP%obs_i=iobs_orig) (all) do (&STRIP%obs_sigi=sigi_orig) (all) end if end xray predict mode=reciprocal to=fcalc selection=(&low_res >= d >= &high_res) atomselection=( &atom_select ) end end @CNS_XTALMODULE:scale_and_solvent_grid_search ( bscale=&bscale; sel=( ref_active=1 ); sel_test=( tst_active=1 ); atom_select=( &atom_select ); bulk_sol=&bulk_sol; bulk_mask=&bulk_mask_infile; bulk_atoms=( &atom_select ); sol_auto=&sol_auto; sol_k=&sol_k; sol_b=&sol_b; sol_rad=&sol_rad; sol_shrink=&sol_shrink; fcalc=fcalc; obs_f=&STRIP%obs_f; obs_sigf=&STRIP%obs_sigf; obs_i=$STRIP%obs_i; obs_sigi=$STRIP%obs_sigi; fpart=fbulk; Baniso_11=$Baniso_11; Baniso_22=$Baniso_22; Baniso_33=$Baniso_33; Baniso_12=$Baniso_12; Baniso_13=$Baniso_13; Baniso_23=$Baniso_23; Biso=$Biso_model; sol_k_best=$sol_k_ref; sol_b_best=$sol_b_ref; solrad_best=$solrad_best; shrink_best=$shrink_best; b=b; low_b_flag=$low_b_flag; sol_output=&sol_output; ) xray @@CNS_XTALMODULE:calculate_r ( fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; sel=( ref_active=1 ); sel_test=( tst_active=1 ); print=true; output=OUTPUT; r=$map_r; test_r=$map_free_r;) end {- check the gridding again since the minimum B-factor may have changed -} show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=&grid; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) xray @@CNS_XTALMODULE:refinementtarget (target=&reftarget; sig_sigacv=0.07; mbins=&target_bins; fobs=&STRIP%obs_f; sigma=&STRIP%obs_sigf; weight=$STRIP%obs_w; iobs=$STRIP%obs_i; sigi=$STRIP%obs_sigi; test=tst_active; fcalc=fcalc; fpart=fbulk; pa=&STRIP%obs_pa; pb=&STRIP%obs_pb; pc=&STRIP%obs_pc; pd=&STRIP%obs_pd; phase=&STRIP%obs_phase; fom=&STRIP%obs_fom; sel=(ref_active=1); sel_test=(tst_active=1); statistics=true;) predict mode=dtarget(fcalc) to=dtarg selection=(ref_active=1) atomselection=( &atom_select ) end end xray {- take the negative of the gradient so the map is the same sign as a standard difference map -} do (fmap=-dtarg) (ref_active=1) end if (&bsharp # 0) then {- b-factor sharpening -} evaluate ($bsharp= (-1) * &bsharp) xray do (fmap=exp( $bsharp * s^2/4) * fmap) ( all ) end end if xray declare name=map domain=real end do (map=ft(fmap)) (ref_active=1) end xray undeclare name=dtarg domain=reciprocal end undeclare name=total domain=reciprocal end end if (&map_scale=true) then xray show rms (real(map)) ( all ) do (map=map/$result) ( all ) evaluate ($map_scale=$result) end end if set remarks=reset end set remarks=accumulate end xray show sum (1) (tst_active=1) if ( $result > 0 ) then evaluate ($test_exist=true) else evaluate ($test_exist=false) end if end evaluate ($remark="( d(" + &reftarget + ")/dFc )") evaluate ($remark=$remark + " map") if ( $total_test > 0 ) then remark $remark r= $map_r[f6.4] free_r= $map_free_r[f6.4] else remark $remark r= $map_r[f6.4] end if remark resolution range of map: &low_res - &high_res if ( &obs_type = "intensity" ) then remark reflections with Iobs/sigma_I < &sigma_cut rejected remark reflections with Iobs > &obs_rms * rms(Iobs) rejected else remark reflections with |Fobs|/sigma_F < &sigma_cut rejected remark reflections with |Fobs| > &obs_rms * rms(Fobs) rejected end if xray anomalous=? end if ( $result = true ) then remark anomalous diffraction data was input end if remark fft gridding factor = $fft_grid, B factor offset = $fft_b_add A^2, Elimit = $fft_elim remark theoretical total number of refl. in resol. range: $total_theor[I6] ( 100.0 % ) remark number of unobserved reflections (no entry): $unobserved[I6] ( $per_unobs[f5.1] % ) remark number of reflections rejected: $rejected[I6] ( $per_reject[f5.1] % ) remark total number of reflections used: $total_used[I6] ( $per_used[f5.1] % ) remark number of reflections in working set: $total_work[I6] ( $per_work[f5.1] % ) remark number of reflections in test set: $total_test[I6] ( $per_test[f5.1] % ) if ( &bscale = "anisotropic" ) then REMARK Anisotropic B-factor tensor Ucart of atomic model without isotropic component : REMARK B11=$Baniso_11[f8.3] B22=$Baniso_22[f8.3] B33=$Baniso_33[f8.3] REMARK B12=$Baniso_12[f8.3] B13=$Baniso_13[f8.3] B23=$Baniso_23[f8.3] REMARK Isotropic component added to coordinate array B: $Biso_model[f8.3] elseif ( &bscale = "isotropic" ) then REMARK B-factor applied to coordinate array B: $Biso_model[f8.3] else REMARK initial B-factor correction: none end if if ( &bulk_sol = true ) then remark bulk solvent: probe radius=$solrad_best, shrink value=$solrad_best remark bulk solvent: density level= $sol_k_ref e/A^3, B-factor= $sol_b_ref A^2 else remark bulk solvent: false end if if (&bsharp # 0) then remark B-factor sharpening applied to map: exp( Bsharp * S^2/4 ) where Bsharp = &bsharp end if if (&map_scale=true) then remarks map has been scaled by 1/rms (rms= $map_scale[F11.5] ) end if remark a= &a b= &b c= &c alpha= &alpha beta= &beta gamma= &gamma sg= &STRIP%sg if ( &write_coeff = true ) then evaluate ($coeff_out=&output_root + ".hkl") xray declare name=map_coeff domain=reciprocal type=complex end do (map_coeff=fmap) (all) set display=$coeff_out end end @CNS_XTALMODULE:write_hkl_header (sg=&STRIP%sg; sgparam=$sgparam;) xray write reflection output=$coeff_out sele=(ref_active=1) map_coeff end set display=OUTPUT end undeclare name=map_coeff domain=reciprocal end end end if xray undeclare name=fmap domain=reciprocal end end if ( &write_map = true ) then evaluate ($filename=&output_root + ".map") if ( &map_mode = "asymmetric" ) then evaluate ($map_mode_string=ASYM) elseif ( &map_mode = "unit" ) then evaluate ($map_mode_string=UNIT) elseif ( &map_mode = "box" ) then evaluate ($map_mode_string=BOX) elseif ( &map_mode = "fract" ) then evaluate ($map_mode_string=FRAC) else evaluate ($map_mode_string=MOLE) end if xray write map if ( &map_format = "ezd" ) then type=ezd else type=cns end if automatic=false from=map output=$filename cushion=&map_cushion selection=&atom_map extend=$map_mode_string if ( &map_mode = "box" ) then xmin=&xmin xmax=&xmax ymin=&ymin ymax=&ymax zmin=&zmin zmax=&zmax end if if ( &map_mode = "fract" ) then xmin=&xmin xmax=&xmax ymin=&ymin ymax=&ymax zmin=&zmin zmax=&zmax end if end end end if if ( &peak_search = true ) then show sum ( x ) ( segid PEAK) if ($SELECT > 0) then display display WARNING: there are atoms that have the reserved segid PEAK. display They will be deleted prior to the peak search. display end if delete sele=(segid=PEAK) end evaluate ($filename=&output_root + "_positive.peaks") xray peakpik from=map mpeak=&peak_num selection=( all ) atom=true proximity=(&atom_map) end end write coor output=$filename selection=(segid=PEAK) end delete sele=(segid=PEAK) end evaluate ($filename=&output_root + "_negative.peaks") xray do (map=-map) ( all ) peakpik from=map mpeak=&peak_num selection=( all ) atom=true proximity=(&atom_map) end end write coor output=$filename selection=(segid=PEAK) end end if stop