{+ file: water_delete.inp +} {+ directory: xtal_refine +} {+ description: delete water molecules by simple analysis of electron density map based on real space local correlation coefficient and peak height +} {+ comments: Water molecules can be deleted on the basis of realspace correlation coefficient and/or maximum density level at the water position. The water molecules selected for analysis are excluded from the map calculation. Choice of map coefficients: (u m|Fo| e^(i phi_calc)) - (v D|Fc| e^(i phi_calc)) (u |Fo| e^(i phi_calc)) - (v k|Fc| e^(i phi_calc)) (u m|Fo| e^(i phi_comb)) - (v D|Fc| e^(i phi_calc)) (u m_obs|Fo| e^(i phi_obs )) - (v k|Fc| e^(i phi_calc)) d(target)/dFc where Fc is the calculated structure factor where m and D are derived from sigmaa +} {+ authors: Axel T. Brunger and Paul D. Adams +} {+ copyright: Yale University +} {+ reference: R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986) +} {+ reference: G.J. Kleywegt and A.T. Brunger, Checking your imagination: Applications of the free R value, Structure 4, 897-904 (1996) +} {- Guidelines for using this file: - all strings must be quoted by double-quotes - logical variables (true/false) must not be quoted - do not remove any evaluate statements from the file -} {- begin block parameter definition -} define( {============================ coordinates ============================} {* coordinate file *} {===>} coordinate_infile="water_pick.pdb"; {==================== molecular information ==========================} {* topology files *} {===>} topology_infile_1="CNS_TOPPAR:protein.top"; {===>} topology_infile_2="CNS_TOPPAR:dna-rna.top"; {===>} topology_infile_3="CNS_TOPPAR:water.top"; {===>} topology_infile_4="CNS_TOPPAR:ion.top"; {===>} topology_infile_5="CNS_TOPPAR:carbohydrate.top"; {===>} topology_infile_6=""; {===>} topology_infile_7=""; {===>} topology_infile_8=""; {* linkage files for linear, continuous polymers (protein, DNA, RNA) *} {===>} link_infile_1="CNS_TOPPAR:protein.link"; {===>} link_infile_2="CNS_TOPPAR:dna-rna-pho.link"; {===>} link_infile_3=""; {* parameter files *} {===>} parameter_infile_1="CNS_TOPPAR:protein_rep.param"; {===>} parameter_infile_2="CNS_TOPPAR:dna-rna_rep.param"; {===>} parameter_infile_3="CNS_TOPPAR:water_rep.param"; {===>} parameter_infile_4="CNS_TOPPAR:ion.param"; {===>} parameter_infile_5="CNS_TOPPAR:carbohydrate.param"; {===>} parameter_infile_6=""; {===>} parameter_infile_7=""; {===>} parameter_infile_8=""; {* molecular topology file: optional (leave blank for auto generation) *} {* Auto generation of the molecular topology from the coordinates should only be used if: (1) Each distinct protein, DNA, or RNA chain must have a separate segid (or chainid if the chainid is non-blank). (2) Each contiguous protein, RNA, or RNA chain must not be disrupted by other types of residues or ligands. Rather, these other residues should be listed after protein, RNA/DNA chains. (3) Disulphides are automatically detected based on distances between the sulfur atoms (must be less than 3 A apart). (4) Broken protein/RNA/DNA chains without terminii must be more than 2.5 A apart to be recognized as such. (5) N-linked glycan links are automatically recognized if the bonded atoms are less than 2.5 A apart. (6) Automatic generation cannot be used with alternate conformations. For ligands, the user must make suitable topology and parameter files. For non-standard covalent linkages, the custom patch file should be used. Alternatively, the generate.inp or generate_easy.inp task files can be used to generated the mtf prior to running this task file. *} {===>} structure_infile="water_pick.mtf"; {* for auto generation: extra linkages and modifications by custom patches *} {===>} patch_infile=""; {====================== crystallographic data ========================} {* space group *} {* use International Table conventions with subscripts substituted by parenthesis *} {===>} sg="P2(1)2(1)2(1)"; {* unit cell parameters in Angstroms and degrees *} {+ table: rows=1 "cell" cols=6 "a" "b" "c" "alpha" "beta" "gamma" +} {===>} a=61.76; {===>} b=40.73; {===>} c=26.74; {===>} alpha=90; {===>} beta=90; {===>} gamma=90; {* anomalous f' f'' library file *} {* If a file is not specified, no anomalous contribution will be included *} {+ choice: "CNS_XRAYLIB:anom_cu.lib" "CNS_XRAYLIB:anom_mo.lib" "" user_file +} {===>} anom_library=""; {* reflection files *} {* specify non-anomalous reflection files before anomalous reflection files. *} {* files must contain unique array names otherwise errors will occur *} {===>} reflection_infile_1="amy.cv"; {===>} reflection_infile_2=""; {===>} reflection_infile_3=""; {===>} reflection_infile_4=""; {* reciprocal space array containing observed amplitudes: required *} {===>} obs_f="fobs"; {* reciprocal space array containing sigma values for amplitudes: required *} {===>} obs_sigf="sigma"; {* reciprocal space array containing test set for cross-validation: required for calculation of cross-validated sigmaA values *} {===>} test_set="test"; {* number for selection of test reflections: required for cross-validation *} {* ie. reflections with the test set array equal to this number will be used for cross-validation, all other reflections form the working set *} {===>} test_flag=1; {* reciprocal space array containing weighting scheme for observed amplitudes: optional *} {* only used for the "residual" and "vector" targets - this will default to a constant value of 1 if array is not present *} {===>} obs_w=""; {* reciprocal space array containing observed intensities: optional *} {* required for the "mli" target *} {===>} obs_i=""; {* reciprocal space array containing sigma values for intensities: optional *} {* required for the "mli" target *} {===>} obs_sigi=""; {* reciprocal space arrays with experimental phase probability distribution: optional *} {* Hendrickson-Lattman coefficients A,B,C,D *} {* required for the "mlhl" target *} {+ table: rows=1 "HL coefficients" cols=4 "A" "B" "C" "D" +} {===>} obs_pa=""; {===>} obs_pb=""; {===>} obs_pc=""; {===>} obs_pd=""; {* complex reciprocal space array containing experimental phases: optional *} {* required for the "mixed" and "vector" targets *} {===>} obs_phase=""; {* reciprocal space array containing experimental figures of merit: optional *} {* required for the "mixed" target *} {===>} obs_fom=""; {* resolution limits for data included in map calculation *} {* all data available should be included in the map calculation *} {+ table: rows=1 "resolution" cols=2 "lowest" "highest" +} {===>} low_res=500.0; {===>} high_res=2.0; {* apply rejection criteria to amplitudes or intensities *} {+ choice: "amplitude" "intensity" +} {===>} obs_type="amplitude"; {* Observed data cutoff criteria: applied to amplitudes or intensities *} {* reflections with magnitude(Obs)/sigma < cutoff are rejected. *} {===>} sigma_cut=0.0; {* rms outlier cutoff: applied to amplitudes or intensities *} {* reflections with magnitude(Obs) > cutoff*rms(Obs) will be rejected *} {===>} obs_rms=10000; {=================== non-crystallographic symmetry ===================} {* NCS-restraints/constraints file *} {* see auxiliary/ncs.def *} {===>} ncs_infile=""; {============ overall B-factor and bulk solvent corrections ==========} {* overall B-factor correction *} {+ choice: "no" "isotropic" "anisotropic" +} {===>} bscale="anisotropic"; {* bulk solvent correction *} {* a mask is required around the molecule(s). The region outside this mask is the solvent region *} {+ choice: true false +} {===>} bulk_sol=true; {* bulk solvent mask file *} {* mask will be read from O type mask file if a name is given otherwise calculated from coordinates of selected atoms *} {===>} bulk_mask_infile=""; {* automatic bulk solvent parameter optimization for e-density level sol_k (e/A^3) and B-factor sol_b (A^2) *} {+ choice: true false +} {===>} sol_auto=true; {* fixed solvent parameters (used if the automatic option is turned off) *} {+ table: rows=1 "bulk solvent" cols=2 "e-density level sol_k (e/A^3)" "B-factor sol_b (A^2) " +} {===>} sol_k=0.3; {===>} sol_b=50.0; {* optional file with a listing of the results of the automatic bulk solvent optimization *} {===>} sol_output=""; {* solvent mask parameters *} {+ table: rows=1 "bulk solvent" cols=2 "probe radius (A) (usually set to 1)" "shrink radius (A) (usually set to 1)" +} {===>} sol_rad=1.0; {===>} sol_shrink=1.0; {========================== atom selection ===========================} {* select atoms to be included in map calculation *} {===>} atom_select=(known and not hydrogen); {* select water molecules to be analysed for possible deletion *} {* these atoms will not be included in the map calculation *} {===>} water_select=(segid S); {===================== water deleting parameters =====================} {* minimum realspace correlation at a water position *} {* waters with a realspace correlation less than this will be deleted *} {===>} min_correl=0.50; {* minimum peak height in sigma units at a water position *} {* waters with a peak height less than this will be deleted *} {===>} min_peak=3.0; {==================== map generation parameters ======================} {* maps are calculated u*Fo - v*Fc *} {* eg. 2fo-fc map -> u=2 and v=1 or fo-fc map -> u=1 and v=1 *} {* specify u *} {===>} u=1; {* specify v *} {===>} v=1; {* type of map *} {+ list: sigmaa: (u m|Fo| - v D|Fc|)^exp(i phi_calc) m and D calculated from sigmaa unweighted: (u |Fo| - v k|Fc|)^exp(i phi_calc) no figure-of-merit weighting combined: (u m|Fo|^exp(i phi_comb) - v D|Fc|^exp(i phi_calc)) model and experimental phases combined, m and D from sigmaa observed: (u m|Fo|^exp(i phi_obs) - v k|Fc|^exp(i phi_calc)) observed phases and fom from phase probability distribution gradient: d(target)/dFc gradient of the current crystallographic target wrt Fc NB. experimental phases must be supplied as a phase probability distribution in the Hendrickson-Lattman arrays +} {+ choice: "sigmaa" "unweighted" "combined" "observed" "gradient" +} {===>} map_type="sigmaa"; {* refinement target - used for gradient maps and refinement of waters *} {+ list: mlf: maximum likelihood target using amplitudes mli: maximum likelihood target using intensities mlhl: maximum likelihood target using amplitudes and phase probability distribution residual: standard crystallographic residual vector: vector residual mixed: (1-fom)*residual + fom*vector e2e2: correlation coefficient using normalized E^2 e1e1: correlation coefficient using normalized E f2f2: correlation coefficient using F^2 f1f1: correlation coefficient using F +} {+ choice: "mlf" "mli" "mlhl" "residual" "vector" "mixed" "e2e2" "e1e1" "f2f2" "f1f1" +} {===>} reftarget="mlf"; {* number of bins for refinement target *} {* this will be determined automatically if a negative value is given otherwise the specified number of bins will be used *} {===>} target_bins=-1; {* use model amplitudes for unmeasured data *} {* this will not be applied to gradient or difference maps *} {+ choice: true false +} {===>} fill_in=false; {* scale map by dividing by the rms sigma of the map *} {* otherwise map will be on an absolute fobs scale *} {+ choice: true false +} {===>} map_scale=true; {* b-factor sharpening (A^2), for example, -100 *} {===>} bsharp=0; {* map grid size: dmin*grid *} {===>} grid=0.25; {* memory allocation for FFT calculation *} {* this will be determined automatically if a negative value is given otherwise the specified number of words will be allocated *} {===>} fft_memory=-1; {=========================== output files ============================} {* root name for output files *} {+ list: listing file will be: .list output molecular structure file will be: .mtf output coordinate file will be: .pdb water mask will be: _water.mask +} {===>} output_root="water_delete"; {===========================================================================} { things below this line do not normally need to be changed } {===========================================================================} ) {- end block parameter definition -} checkversion 1.3 evaluate ($log_level=quiet) if ( $log_level = verbose ) then set message=normal echo=on end else set message=off echo=off end end if if ( &BLANK%structure_infile = true ) then {- read topology files -} topology evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then @@&topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end @CNS_XTALMODULE:mtfautogenerate ( coordinate_infile=&coordinate_infile; convert=true; separate=true; atom_delete=(not known); hydrogen_flag=true; break_cutoff=2.5; disulphide_dist=3.0; carbo_dist=2.5; patch_infile=&patch_infile; O5_becomes="O"; ) else structure @&structure_infile end coordinates @&coordinate_infile end if {- read parameter files -} parameter evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then @@¶meter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end set message=normal echo=on end xray @CNS_XTALLIB:spacegroup.lib (sg=&sg; sgparam=$sgparam;) a=&a b=&b c=&c alpha=&alpha beta=&beta gamma=&gamma @CNS_XRAYLIB:scatter.lib binresolution &low_res &high_res mapresolution &high_res generate &low_res &high_res evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then reflection @@&reflection_infile_$counter end end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end if ( &BLANK%anom_library = false ) then @@&anom_library else set echo=off end xray anomalous=? end if ( $result = true ) then display Warning: no anomalous library has been specified display no anomalous contribution will used in refinement end if set echo=on end end if {- copy define parameters of optional arrays into symbols so we can redefine them -} evaluate ($obs_i=&obs_i) evaluate ($obs_sigi=&obs_sigi) evaluate ($obs_w=&obs_w) xray @@CNS_XTALMODULE:checkrefinput ( reftarget=&reftarget; obs_f=&obs_f; obs_sigf=&obs_sigf; test_set=&test_set; obs_pa=&obs_pa; obs_pb=&obs_pb; obs_pc=&obs_pc; obs_pd=&obs_pd; obs_phase=&obs_phase; obs_fom=&obs_fom; obs_w=$obs_w; obs_i=$obs_i; obs_sigi=$obs_sigi; ) query name=fcalc domain=reciprocal end if ( $object_exist = false ) then declare name=fcalc domain=reciprocal type=complex end end if declare name=fbulk domain=reciprocal type=complex end do (fbulk=0) ( all ) if ( &obs_type = "intensity" ) then if ( &BLANK%obs_i = true ) then display Error: observed intensity array is undefined display aborting script abort end if evaluate ($reject_obs=&obs_i) evaluate ($reject_sig=&obs_sigi) else evaluate ($reject_obs=&obs_f) evaluate ($reject_sig=&obs_sigf) end if declare name=ref_active domain=reciprocal type=integer end declare name=tst_active domain=reciprocal type=integer end do (ref_active=0) ( all ) do (ref_active=1) ( ( $STRIP%reject_sig # 0 ) and ( &low_res >= d >= &high_res ) ) statistics overall completeness selection=( ref_active=1 ) end evaluate ($total_compl=$expression1) show sum(1) ( ref_active=1 ) evaluate ($total_read=$select) evaluate ($total_theor=int(1./$total_compl * $total_read)) show rms (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_high=$result*&obs_rms) show min (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_low=$result) do (ref_active=0) ( all ) do (ref_active=1) ( ( amplitude($STRIP%reject_obs) > &sigma_cut*$STRIP%reject_sig ) and ( $STRIP%reject_sig # 0 ) and ( $obs_low <= amplitude($STRIP%reject_obs) <= $obs_high ) and ( &low_res >= d >= &high_res ) ) do (tst_active=0) (all) if ( &BLANK%test_set = false ) then do (tst_active=1) (ref_active=1 and &STRIP%test_set=&test_flag) end if show sum(1) ( ref_active=1 and tst_active=0 ) evaluate ($total_work=$select) show sum(1) ( ref_active=1 and tst_active=1 ) evaluate ($total_test=$select) evaluate ($total_used=$total_work+$total_test) evaluate ($unobserved=$total_theor-$total_read) evaluate ($rejected=$total_read-$total_used) evaluate ($per_unobs=100*($unobserved/$total_theor)) evaluate ($per_reject=100*($rejected/$total_theor)) evaluate ($per_used=100*($total_used/$total_theor)) evaluate ($per_work=100*($total_work/$total_theor)) evaluate ($per_test=100*($total_test/$total_theor)) associate fcalc ( &atom_select and not ( &water_select ) ) tselection=( ref_active=1 ) cvselection=( tst_active=1 ) method=FFT {- MODIFIED 2/15/06 -} end show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=&grid; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) xray {- END MODIFICATION -} tolerance=0.0 lookup=false end if ( &map_type = "observed" ) then evalaute ($test_hl=true) elseif ( &map_type = "combined" ) then evalaute ($test_hl=true) else evalaute ($test_hl=false) end if if ( $test_hl = true ) then xray @@CNS_XTALMODULE:check_abcd (pa=&obs_pa; pb=&obs_pb; pc=&obs_pc; pd=&obs_pd;) end end if if ( &BLANK%ncs_infile = false ) then inline @&ncs_infile end if xray declare name=dtarg domain=reciprocal type=complex end declare name=total domain=reciprocal type=complex end declare name=fmap domain=reciprocal type=complex end predict mode=reciprocal to=fcalc selection=( &low_res >= d >= &high_res ) atomselection=( &atom_select and not ( &water_select ) ) end end {- BEGIN MODIFICATION -} @CNS_XTALMODULE:scale_and_solvent_grid_search ( bscale=&bscale; sel=( ref_active=1 ); sel_test=( tst_active=1 ); atom_select=( &atom_select ); bulk_sol=&bulk_sol; bulk_mask=&bulk_mask_infile; bulk_atoms=( &atom_select ); sol_auto=&sol_auto; sol_k=&sol_k; sol_b=&sol_b; sol_rad=&sol_rad; sol_shrink=&sol_shrink; fcalc=fcalc; obs_f=&STRIP%obs_f; obs_sigf=&STRIP%obs_sigf; obs_i=$STRIP%obs_i; obs_sigi=$STRIP%obs_sigi; fpart=fbulk; ! ! Begin modification (6/28/06) Baniso_11=$Baniso_11; Baniso_22=$Baniso_22; Baniso_33=$Baniso_33; Baniso_12=$Baniso_12; Baniso_13=$Baniso_13; Baniso_23=$Baniso_23; Biso=$Biso_model; ! End modification ! sol_k_best=$sol_k_ref; sol_b_best=$sol_b_ref; solrad_best=$solrad_best; shrink_best=$shrink_best; b=b; low_b_flag=$low_b_flag; sol_output=&sol_output; ) xray @@CNS_XTALMODULE:calculate_r ( fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; sel=( ref_active=1 ); sel_test=( tst_active=1 ); print=true; output=OUTPUT; r=$start_r; test_r=$start_test_r;) end {- check the gridding again since the minimum B-factor may have changed -} show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=auto; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) {- END MODIFICATION -} xray if ( &map_type = "gradient" ) then @@CNS_XTALMODULE:refinementtarget (target=&reftarget; sig_sigacv=0.07; mbins=&target_bins; fobs=&STRIP%obs_f; sigma=&STRIP%obs_sigf; weight=$STRIP%obs_w; iobs=$STRIP%obs_i; sigi=$STRIP%obs_sigi; test=tst_active; fcalc=fcalc; fpart=fbulk; pa=&STRIP%obs_pa; pb=&STRIP%obs_pb; pc=&STRIP%obs_pc; pd=&STRIP%obs_pd; phase=&STRIP%obs_phase; fom=&STRIP%obs_fom; sel=(ref_active=1); sel_test=(tst_active=1); statistics=true;) predict mode=dtarget(fcalc) to=dtarg selection=( ref_active=1 ) atomselection=( &atom_select and not ( &water_select ) ) end end if end xray declare name=map_phase domain=reciprocal type=real end declare name=map_fom domain=reciprocal type=real end declare name=map_scale domain=reciprocal type=real end end if ( &map_type = "unweighted" ) then xray do (map_phase=phase(fcalc+fbulk)) (all) do (total=fcalc+fbulk) (all) multiscale bfmin=-40 bfmax=40 set1=&STRIP%obs_f k1=-1 b1=0 set2=total b2=0 selection=(ref_active=1) end do (map_scale=$k2) (all) do (map_fom=1.0) (all) end elseif ( &map_type = "sigmaa" ) then xray do (map_phase=phase(fcalc+fbulk)) (all) declare name=m domain=reciprocal type=complex end declare name=mod_fom domain=reciprocal type=real end declare name=mod_x domain=reciprocal type=real end declare name=mod_pa domain=reciprocal type=real end declare name=mod_pb domain=reciprocal type=real end declare name=mod_pc domain=reciprocal type=real end declare name=mod_pd domain=reciprocal type=real end declare name=mod_dd domain=reciprocal type=real end @CNS_XTALMODULE:fomsigmaacv ( sig_sigacv=0.07; mbins=&target_bins; statistics=true; fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; test=tst_active; sel=(ref_active=1); sel_test=(tst_active=1); fom=mod_fom; x=mod_x; pa=mod_pa; pb=mod_pb; pc=mod_pc; pd=mod_pd; dd=mod_dd; ) do (map_fom=mod_fom) (all) do (map_scale=distribute(mod_dd)) (&low_res >= d >= &high_res) undeclare name=m domain=reciprocal end undeclare name=mod_fom domain=reciprocal end undeclare name=mod_x domain=reciprocal end undeclare name=mod_pa domain=reciprocal end undeclare name=mod_pb domain=reciprocal end undeclare name=mod_pc domain=reciprocal end undeclare name=mod_pd domain=reciprocal end undeclare name=mod_dd domain=reciprocal end end elseif ( &map_type = "combined" ) then xray declare name=m domain=reciprocal type=complex end declare name=mod_fom domain=reciprocal type=real end declare name=mod_x domain=reciprocal type=real end declare name=mod_pa domain=reciprocal type=real end declare name=mod_pb domain=reciprocal type=real end declare name=mod_pc domain=reciprocal type=real end declare name=mod_pd domain=reciprocal type=real end declare name=mod_dd domain=reciprocal type=real end @CNS_XTALMODULE:fomsigmaacv ( sig_sigacv=0.07; mbins=&target_bins; statistics=true; fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; test=tst_active; sel=(ref_active=1); sel_test=(tst_active=1); fom=mod_fom; x=mod_x; pa=mod_pa; pb=mod_pb; pc=mod_pc; pd=mod_pd; dd=mod_dd; ) @CNS_XTALMODULE:combineprobability ( messages="off"; addname="model phases"; pa=mod_pa; pb=mod_pb; pc=mod_pc; pd=mod_pd; w=1; addname="experimental phases"; adda=&STRIP%obs_pa; addb=&STRIP%obs_pb; addc=&STRIP%obs_pc; addd=&STRIP%obs_pd; addw=1;) @CNS_XTALMODULE:getfom ( pa=mod_pa; pb=mod_pb; pc=mod_pc; pd=mod_pd; m=m; phistep=5; ) do (map_phase=phase(m)) (all) do (map_fom=amplitude(m)) (all) do (map_scale=distribute(mod_dd)) (&low_res >= d >= &high_res) undeclare name=m domain=reciprocal end undeclare name=mod_fom domain=reciprocal end undeclare name=mod_x domain=reciprocal end undeclare name=mod_pa domain=reciprocal end undeclare name=mod_pb domain=reciprocal end undeclare name=mod_pc domain=reciprocal end undeclare name=mod_pd domain=reciprocal end undeclare name=mod_dd domain=reciprocal end end elseif ( &map_type = "observed" ) then xray do (total=fcalc+fbulk) (all) multiscale bfmin=-40 bfmax=40 set1=&STRIP%obs_f k1=-1 b1=0 set2=total b2=0 selection=(ref_active=1) end do (map_scale=$k2) (all) declare name=m domain=reciprocal type=complex end @CNS_XTALMODULE:getfom ( pa=&STRIP%obs_pa; pb=&STRIP%obs_pb; pc=&STRIP%obs_pc; pd=&STRIP%obs_pd; m=m; phistep=5; ) do (map_phase=phase(m)) (all) do (map_fom=amplitude(m)) (all) undeclare name=m domain=reciprocal end end end if if ( &map_type = "gradient" ) then xray declare name=map domain=real end {- BEGIN MODIFICATION -} {- b-factor sharpening -} evaluate ($bsharp= (-1) * &bsharp) {- take the negative of the gradient so the map is the same sign as a standard difference map -} do (fmap=exp( $bsharp * s^2/4) * (-1) * dtarg) ( all ) do (map=ft(fmap)) (map_active=1) {- END MODIFICATION -} end else xray if ( &u = &v ) then do (fmap= 2 ((&u map_fom combine(amplitude(&STRIP%obs_f),map_phase)) - (&v map_scale (fcalc+fbulk)))) (ref_active=1 and acentric) do (fmap= (&u map_fom combine(amplitude(&STRIP%obs_f),map_phase)) - (&v map_scale (fcalc+fbulk))) (ref_active=1 and centric) else do (fmap=(&u map_fom combine(amplitude(&STRIP%obs_f),map_phase)) - (&v map_scale (fcalc+fbulk))) (ref_active=1 and acentric) do (fmap=(max((&u-1),0) map_fom combine(amplitude(&STRIP%obs_f),map_phase)) - (max((&v-1),0) map_scale (fcalc+fbulk))) (ref_active=1 and centric) if ( &fill_in = true ) then do (fmap=(&u-&v) map_scale (fcalc+fbulk)) (&low_res >= d >= &high_res and ref_active # 1) end if end if end {- MODIFIED -} {- b-factor sharpening -} evaluate ($bsharp= (-1) * &bsharp) xray do (fmap=exp( $bsharp * s^2/4) * fmap) ( all ) end {- END MODIFICATION -} xray declare name=map domain=real end if ( &u = &v ) then do (map=ft(fmap)) (ref_active=1) else if ( &fill_in = true ) then do (map=ft(fmap)) (&low_res >= d >= &high_res) else do (map=ft(fmap)) (ref_active=1) end if end if end end if xray undeclare name=map_phase domain=reciprocal end undeclare name=map_fom domain=reciprocal end undeclare name=map_scale domain=reciprocal end end xray undeclare name=dtarg domain=reciprocal end undeclare name=total domain=reciprocal end undeclare name=fmap domain=reciprocal end end xray if (&map_scale=true) then show rms (real(map)) ( all ) if ( $result > 0 ) then do (map=map/$result) ( all ) end if end if end xray declare name=mod_map domain=real end predict mode=real to=mod_map atomselection=(&atom_select and &water_select) end if (&map_scale=true) then show rms (real(mod_map)) ( all ) do (mod_map=mod_map/$result) ( all ) end if declare name=corr_map domain=real end declare name=map11 domain=real end declare name=map12 domain=real end declare name=map22 domain=real end declare name=map11_ave domain=real end {- ADDED -} declare name=map22_ave domain=real end {- ADDED -} declare name=prop domain=real end declare name=dist domain=real end declare name=mask domain=real end end do (store9=0) (all) evaluate ($counter=1) for $id in id ( tag and &water_select ) loop main do ( store9=$counter ) ( byres( id $id) ) evaluate ($counter=$counter+1) end loop main xray mask averaging_mode=true mode=vdw solrad=0.1 shrink=0.1 nshell=1 to=mask selection=( &atom_select and &water_select ) end do (prop=0) (all) proximity from=store9 distance_map=dist property_map=prop cutoff=3.0 selection=( &atom_select and &water_select ) end {- BEGIN MODIFICAITON -} do (map11_ave=gave(real(map), real(prop))) ( real(prop) > 0 and real(mask) <= 0 ) do (map22_ave=gave(real(mod_map), real(prop))) ( real(prop) > 0 and real(mask) <= 0 ) do (map11=gave((real(map)-map11_ave )* (real(map)-map11_ave), real(prop)) ) ( real(prop) > 0 and real(mask) <= 0 ) do (map12=gave((real(map)-map11_ave )* (real(mod_map)-map22_ave ), real(prop)) ) ( real(prop) > 0 and real(mask) <= 0 ) do (map22=gave((real(mod_map)-map22_ave )* (real(mod_map)-map22_ave), real(prop)) ) ( real(prop) > 0 and real(mask) <= 0 ) do (corr_map=real(map12)/ max( 0.0001, sqrt ( real(map11) * real(map22) ) )) ( real(prop) > 0 and real(mask) <= 0 ) {- END MODIFICATION -} end evaluate ($water_del=0) ident (store9) (none) evaluate ($display_outfile=&output_root + ".list") set display=$display_outfile end display display ============================================================== display waters deleted if: display realspace correlation < &min_correl display or peak height < &min_peak display ============================================================== display set display=OUTPUT end evaluate ($counter=1) for $id in id ( tag and &water_select ) loop water xray show ave (real(corr_map)) (real(prop)=$counter and real(mask) <= 0) end evaluate ($corr=$result) xray show max (real(map)) (real(prop)=$counter and real(mask) <= 0) end evaluate ($peak=$result) show (resname) (id $id) evaluate ($resname=$result) show (resid) (id $id) evaluate ($resid=$result) show (segid) (id $id) evaluate ($segid=$result) evaluate ($del=false) if ( $corr < &min_correl ) then evaluate ($del=true) end if if ( $peak < &min_peak ) then evaluate ($del=true) end if if ( $del = true ) then ident (store9) (store9 or byres(id $id)) set display=$display_outfile end display deleting: water $resname $resid[a4] $segid[a4] \ correlation=$corr[f6.3] peak=$peak[f6.3] set display=OUTPUT end evaluate ($water_del=$water_del+1) else set display=$display_outfile end display keeping: water $resname $resid[a4] $segid[a4] \ correlation=$corr[f6.3] peak=$peak[f6.3] set display=OUTPUT end end if evaluate ($counter=$counter+1) end loop water delete sele=(store9) end xray @CNS_XRAYLIB:scatter.lib predict mode=reciprocal to=fcalc selection=( &low_res >= d >= &high_res ) atomselection=( &atom_select ) end @@CNS_XTALMODULE:calculate_r (fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; sel=(ref_active=1); sel_test=(tst_active=1); print=true; output=OUTPUT; r=$full_r; test_r=$full_test_r;) end evaluate ($mask_outfile=&output_root + "_water.mask") xray write mask from=mask output=$mask_outfile cushion=3.0 extent=molecule end end xray undeclare name=mod_map domain=real end undeclare name=corr_map domain=real end undeclare name=map11 domain=real end undeclare name=map12 domain=real end undeclare name=map22 domain=real end undeclare name=map11_ave domain=real end {- ADDED -} undeclare name=map22_ave domain=real end {- ADDED -} undeclare name=prop domain=real end undeclare name=dist domain=real end undeclare name=mask domain=real end end evaluate ($coordinate_outfile=&output_root + ".pdb") xray show sum (1) (tst_active=1) if ( $result > 0 ) then evaluate ($test_exist=true) else evaluate ($test_exist=false) end if end evaluate ($remark="in ") if ( &map_type = "unweighted" ) then evaluate ($remark=$remark + "(" + encode(&u) + " |Fo| - " + encode(&v) + " k|Fc|)e^(i phi_calc)") elseif ( &map_type = "sigmaa" ) then evaluate ($remark=$remark + "(" + encode(&u) + " m|Fo| - " + encode(&v) + " D|Fc|)e^(i phi_calc)") if ( $test_exist = true ) then evaluate ($remark=$remark + " cross-val.") end if evaluate ($remark=$remark + " sigmaa") elseif ( &map_type = "combined" ) then evaluate ($remark=$remark + "(" + encode(&u) + " m|Fo|)e^(i phi_comb) - " + "(" + encode(&v) + " D|Fc|)e^(i phi_calc)") if ( $test_exist = true ) then evaluate ($remark=$remark + " cross-val.") end if evaluate ($remark=$remark + " sigmaa") elseif ( &map_type = "observed" ) then evaluate ($remark=$remark + "(" + encode(&u) + " m|Fo|)e^(i phi_obs) - " + "(" + encode(&v) + " k m|Fc|)e^(i phi_calc))") elseif ( &map_type = "gradient" ) then evaluate ($remark=$remark + "( d(" + &reftarget + ")/dFc )") end if evaluate ($remark=$remark + " map") set display=$coordinate_outfile end display REMARK coordinates from water deletion display REMARK $water_del waters deleted with display REMARK real space correlation < &min_correl or peak height < &min_peak display REMARK $remark display REMARK map resolution: &low_res - &high_res A if ( $total_test > 0 ) then display REMARK final r= $full_r[f6.4] free_r= $full_test_r[f6.4] else display REMARK final r= $full_r[f6.4] end if display REMARK sg= &STRIP%sg a= &a b= &b c= &c alpha= &alpha beta= &beta gamma= &gamma evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then display REMARK parameter file $counter : &STRIP%parameter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%structure_infile = true ) then display REMARK molecular structure file: automatic evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then display REMARK topology file $counter : &STRIP%topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_link_infile_$counter = true ) then if ( &BLANK%link_infile_$counter = false ) then display REMARK linkage file $counter : &STRIP%link_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%patch_infile = false ) then display REMARK custom patch file = &STRIP%patch_infile end if else display REMARK molecular structure file: &STRIP%structure_infile end if display REMARK input coordinates: &STRIP%coordinate_infile if ( &BLANK%anom_library = false ) then display REMARK anomalous f' f'' library: &STRIP%anom_library end if evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then display REMARK reflection file $counter : &STRIP%reflection_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%ncs_infile = false ) then display REMARK ncs= &STRIP%ncs_type ncs file= &STRIP%ncs_infile else display REMARK ncs= none end if if ( &bscale # "no" ) then if ( $low_b_flag = true ) then display REMARK warning: B-correction gave atomic B-values less than zero display REMARK they have been reset to zero end if end if ! ! Begin modification (6/28/06) if ( &bscale = "anisotropic" ) then display REMARK Anisotropic B-factor tensor Ucart of atomic model without isotropic component : display REMARK B11=$Baniso_11[f8.3] B22=$Baniso_22[f8.3] B33=$Baniso_33[f8.3] display REMARK B12=$Baniso_12[f8.3] B13=$Baniso_13[f8.3] B23=$Baniso_23[f8.3] display REMARK Isotropic component added to coordinate array B: $Biso_model[f8.3] elseif ( &bscale = "isotropic" ) then display REMARK B-factor applied to coordinate array B: $Biso_model[f8.3] else display REMARK initial B-factor correction: none end if ! End modification ! {- MODIFIED 5/18/05 -} if ( &bulk_sol = true ) then display REMARK bulk solvent: probe radius=$solrad_best, shrink value=$solrad_best display REMARK bulk solvent: density level= $sol_k_ref e/A^3, B-factor= $sol_b_ref A^2 else display REMARK bulk solvent: false end if {- END MODIFICATION -} {- BEGIN MODIFICATION -} if (&bsharp # 0) then display REMARK B-factor sharpening applied to map: exp( Bsharp * S^2/4 ) where Bsharp = &bsharp end if {- END MODIFICATION -} if ( &obs_type = "intensity" ) then display REMARK reflections with Iobs/sigma_I < &sigma_cut rejected display REMARK reflections with Iobs > &obs_rms * rms(Iobs) rejected else display REMARK reflections with |Fobs|/sigma_F < &sigma_cut rejected display REMARK reflections with |Fobs| > &obs_rms * rms(Fobs) rejected end if xray anomalous=? end if ( $result = true ) then display REMARK anomalous diffraction data was input end if {- MODIFIED 2/15/06 -} display REMARK gridding factor = $fft_grid, B factor offset = $fft_b_add A^2, Elimit = $fft_elim {- END MODIFICATION -} display REMARK theoretical total number of refl. in resol. range: $total_theor[I6] ( 100.0 % ) display REMARK number of unobserved reflections (no entry): $unobserved[I6] ( $per_unobs[f5.1] % ) display REMARK number of reflections rejected: $rejected[I6] ( $per_reject[f5.1] % ) display REMARK total number of reflections used: $total_used[I6] ( $per_used[f5.1] % ) display REMARK number of reflections in working set: $total_work[I6] ( $per_work[f5.1] % ) display REMARK number of reflections in test set: $total_test[I6] ( $per_test[f5.1] % ) remark evaluate ($structure_outfile=&output_root + ".mtf") write structure output=$structure_outfile end @CNS_XTALMODULE:write_pdb (pdb_o_format=true; coordinate_outfile=$coordinate_outfile; sgparam=$sgparam;) stop