{+ file: twin_fraction.inp +} {+ directory: xtal_twin +} {+ description: Calculation of twinning fraction for data with hemihedral twinning +} {+ authors: Axel T. Brunger, and Paul D. Adams +} {+ copyright: Yale University +} {+ reference: T.O. Yeates, Detecting and Overcoming Crystal Twinning, Methods in Enzymology 276, 344-358 (1997) +} {- Guidelines for using this file: - all strings must be quoted by double-quotes - logical variables (true/false) are not quoted - do not remove any evaluate statements from the file -} {========================== IMPORTANT NOTE ===========================} {* If the test set is to be used it must have been generated with the CNS task file make_cv_twin.inp. This ensures that twin related reflections are part of the same set. *} {- begin block parameter definition -} define( {============================ coordinates ============================} {* coordinate file *} {===>} coordinate_infile="porin.pdb"; {==================== molecular information ==========================} {* topology files *} {===>} topology_infile_1="CNS_TOPPAR:protein.top"; {===>} topology_infile_2="CNS_TOPPAR:dna-rna.top"; {===>} topology_infile_3="CNS_TOPPAR:water.top"; {===>} topology_infile_4="CNS_TOPPAR:ion.top"; {===>} topology_infile_5="CNS_TOPPAR:carbohydrate.top"; {===>} topology_infile_6=""; {===>} topology_infile_7=""; {===>} topology_infile_8=""; {* linkage files for linear, continuous polymers (protein, DNA, RNA) *} {===>} link_infile_1="CNS_TOPPAR:protein.link"; {===>} link_infile_2="CNS_TOPPAR:dna-rna-pho.link"; {===>} link_infile_3=""; {* parameter files *} {===>} parameter_infile_1="CNS_TOPPAR:protein_rep.param"; {===>} parameter_infile_2="CNS_TOPPAR:dna-rna_rep.param"; {===>} parameter_infile_3="CNS_TOPPAR:water_rep.param"; {===>} parameter_infile_4="CNS_TOPPAR:ion.param"; {===>} parameter_infile_5="CNS_TOPPAR:carbohydrate.param"; {===>} parameter_infile_6=""; {===>} parameter_infile_7=""; {===>} parameter_infile_8=""; {* molecular topology file: optional (leave blank for auto generation) *} {* Auto generation of the molecular topology from the coordinates should only be used if: (1) Each distinct protein, DNA, or RNA chain must have a separate segid (or chainid if the chainid is non-blank). (2) Each contiguous protein, RNA, or RNA chain must not be disrupted by other types of residues or ligands. Rather, these other residues should be listed after protein, RNA/DNA chains. (3) Disulphides are automatically detected based on distances between the sulfur atoms (must be less than 3 A apart). (4) Broken protein/RNA/DNA chains without terminii must be more than 2.5 A apart to be recognized as such. (5) N-linked glycan links are automatically recognized if the bonded atoms are less than 2.5 A apart. (6) Automatic generation cannot be used with alternate conformations. For ligands, the user must make suitable topology and parameter files. For non-standard covalent linkages, the custom patch file should be used. Alternatively, the generate.inp or generate_easy.inp task files can be used to generated the mtf prior to running this task file. *} {===>} structure_infile="porin.mtf"; {* for auto generation: extra linkages and modifications by custom patches *} {===>} patch_infile=""; {====================== crystallographic data ========================} {* space group *} {* use International Table conventions with subscripts substituted by parenthesis *} {===>} sg="R3"; {* unit cell parameters in Angstroms and degrees *} {+ table: rows=1 "cell" cols=6 "a" "b" "c" "alpha" "beta" "gamma" +} {===>} a=104.400; {===>} b=104.400; {===>} c=124.250; {===>} alpha=90; {===>} beta=90; {===>} gamma=120; {* anomalous f' f'' library file *} {* If a file is not specified, no anomalous contribution will be included *} {+ choice: "CNS_XRAYLIB:anom_cu.lib" "CNS_XRAYLIB:anom_mo.lib" "" user_file +} {===>} anom_library=""; {* reflection files *} {* specify non-anomalous reflection files before anomalous reflection files. *} {* files must contain unique array names otherwise errors will occur *} {===>} reflection_infile_1="porin.hkl"; {===>} reflection_infile_2=""; {===>} reflection_infile_3=""; {===>} reflection_infile_4=""; {* reciprocal space array containing observed amplitudes: required *} {===>} obs_f="fobs"; {* reciprocal space array containing sigma values for amplitudes: required *} {===>} obs_sigf="sigma"; {* reciprocal space array containing test set for cross-validation: optional *} {* leave blank if cross-validation is not to be used *} {===>} test_set=""; {* number for selection of test reflections: required for cross-validation *} {* ie. reflections with the test set array equal to this number will be used for cross-validation, all other reflections form the working set *} {===>} test_flag=1; {* reciprocal space array containing weighting scheme for observed amplitudes: optional *} {* only used for the "residual" and "vector" targets - this will default to a constant value of 1 if array is not present *} {===>} obs_w=""; {* reciprocal space array containing observed intensities: optional *} {* required for the "mli" target *} {===>} obs_i=""; {* reciprocal space array containing sigma values for intensities: optional *} {* required for the "mli" target *} {===>} obs_sigi=""; {* reciprocal space arrays with experimental phase probability distribution: optional *} {* Hendrickson-Lattman coefficients A,B,C,D *} {* required for the "mlhl" target *} {+ table: rows=1 "HL coefficients" cols=4 "A" "B" "C" "D" +} {===>} obs_pa=""; {===>} obs_pb=""; {===>} obs_pc=""; {===>} obs_pd=""; {* complex reciprocal space array containing experimental phases: optional *} {* required for the "mixed" and "vector" targets *} {===>} obs_phase=""; {* reciprocal space array containing experimental figures of merit: optional *} {* required for the "mixed" target *} {===>} obs_fom=""; {* resolution limits to be used in refinement *} {* the full resolution range of observed data should be used in refinement. A bulk solvent correction should be applied to allow the use of low resolution terms. If no bulk solvent correction is applied, data must be truncated at a lower resolution limit of between 8 and 6 Angstrom. *} {+ table: rows=1 "resolution" cols=2 "lowest" "highest" +} {===>} low_res=500.0; {===>} high_res=2.25; {* apply rejection criteria to amplitudes or intensities *} {+ choice: "amplitude" "intensity" +} {===>} obs_type="amplitude"; {* Observed data cutoff criteria: applied to amplitudes or intensities *} {* reflections with magnitude(Obs)/sigma < cutoff are rejected. *} {===>} sigma_cut=0.0; {* rms outlier cutoff: applied to amplitudes or intensities *} {* reflections with magnitude(Obs) > cutoff*rms(Obs) will be rejected *} {===>} obs_rms=10000; {=================== non-crystallographic symmetry ===================} {* NCS-restraints/constraints file *} {* see auxiliary/ncs.def *} {===>} ncs_infile=""; {============ initial B-factor and bulk solvent corrections ==========} {* overall B-factor correction *} {+ choice: "no" "isotropic" "anisotropic" +} {===>} bscale="anisotropic"; {* bulk solvent correction *} {* a mask is required around the molecule(s). The region outside this mask is the solvent region *} {+ choice: true false +} {===>} bulk_sol=true; {* bulk solvent mask file *} {* mask will be read from O type mask file if a name is given otherwise calculated from coordinates of selected atoms *} {===>} bulk_mask_infile=""; {* automatic bulk solvent parameter optimization for e-density level sol_k (e/A^3) and B-factor sol_b (A^2) *} {+ choice: true false +} {===>} sol_auto=true; {* fixed solvent parameters (used if the automatic option is turned off) *} {+ table: rows=1 "bulk solvent" cols=2 "e-density level sol_k (e/A^3)" "B-factor sol_b (A^2) " +} {===>} sol_k=0.3; {===>} sol_b=50.0; {* optional file with a listing of the results of the automatic bulk solvent optimization *} {===>} sol_output=""; {* solvent mask parameters *} {+ table: rows=1 "bulk solvent" cols=2 "probe radius (A) (usually set to 1)" "shrink radius (A) (usually set to 1)" +} {===>} sol_rad=1.0; {===>} sol_shrink=1.0; {======================= twinning parameters =========================} {* twinning operation *} {===>} twin_oper="h,-h-k,-l"; {========================== atom selection ===========================} {* select atoms to be included in refinement *} {===>} atom_select=(known and not hydrogen); {====================== minimization parameters ======================} {* number of bins for refinement target *} {* this will be determined automatically if a negative value is given otherwise the specified number of bins will be used *} {===>} target_bins=-1; {* memory allocation for FFT calculation *} {* this will be determined automatically if a negative value is given otherwise the specified number of words will be allocated *} {===>} fft_memory=-1; {=========================== output files ============================} {* output listing file *} {===>} list_outfile="twin_fraction.list"; {===========================================================================} { things below this line do not normally need to be changed } {===========================================================================} ) {- end block parameter definition -} checkversion 1.3 evaluate ($log_level=quiet) if ( $log_level = verbose ) then set message=normal echo=on end else set message=off echo=off end end if if ( &BLANK%structure_infile = true ) then {- read topology files -} topology evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then @@&topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end @CNS_XTALMODULE:mtfautogenerate ( coordinate_infile=&coordinate_infile; convert=true; separate=true; atom_delete=(not known); hydrogen_flag=true; break_cutoff=2.5; disulphide_dist=3.0; carbo_dist=2.5; patch_infile=&patch_infile; O5_becomes="O"; ) else structure @&structure_infile end coordinates @&coordinate_infile end if {- read parameter files -} parameter evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then @@¶meter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end set message=normal echo=on end xray @CNS_XTALLIB:spacegroup.lib (sg=&sg; sgparam=$sgparam;) a=&a b=&b c=&c alpha=&alpha beta=&beta gamma=&gamma @CNS_XRAYLIB:scatter.lib evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then reflection @@&reflection_infile_$counter end end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end if ( &BLANK%anom_library = false ) then @@&anom_library else set echo=off end xray anomalous=? end if ( $result = true ) then display Warning: no anomalous library has been specified display no anomalous contribution will used in refinement end if set echo=on end end if evaluate ($obs_i=&obs_i) evaluate ($obs_sigi=&obs_sigi) evaluate ($obs_w=&obs_w) xray @@CNS_XTALMODULE:checkrefinput ( reftarget=&reftarget; obs_f=&obs_f; obs_sigf=&obs_sigf; test_set=&test_set; obs_pa=&obs_pa; obs_pb=&obs_pb; obs_pc=&obs_pc; obs_pd=&obs_pd; obs_phase=&obs_phase; obs_fom=&obs_fom; obs_w=$obs_w; obs_i=$obs_i; obs_sigi=$obs_sigi; ) query name=fcalc domain=reciprocal end if ( $object_exist = false ) then declare name=fcalc domain=reciprocal type=complex end end if declare name=fbulk domain=reciprocal type=complex end do (fbulk=0) ( all ) binresolution &low_res &high_res mapresolution &high_res if ( &obs_type = "intensity" ) then if ( &BLANK%obs_i = true ) then display Error: observed intensity array is undefined display aborting script abort end if evaluate ($reject_obs=&obs_i) evaluate ($reject_sig=&obs_sigi) else evaluate ($reject_obs=&obs_f) evaluate ($reject_sig=&obs_sigf) end if declare name=ref_active domain=reciprocal type=integer end declare name=tst_active domain=reciprocal type=integer end do (ref_active=0) ( all ) do (ref_active=1) ( ( $STRIP%reject_sig # 0 ) and ( &low_res >= d >= &high_res ) ) statistics overall completeness selection=( ref_active=1 ) end evaluate ($total_compl=$expression1) show sum(1) ( ref_active=1 ) evaluate ($total_read=$select) evaluate ($total_theor=int(1./$total_compl * $total_read)) show rms (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_high=$result*&obs_rms) show min (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_low=$result) do (ref_active=0) ( all ) do (ref_active=1) ( ( amplitude($STRIP%reject_obs) > &sigma_cut*$STRIP%reject_sig ) and ( $STRIP%reject_sig # 0 ) and ( $obs_low <= amplitude($STRIP%reject_obs) <= $obs_high ) and ( $obs_low <= amplitude(remap[&STRIP%twin_oper]($STRIP%reject_obs)) <= $obs_high ) and ( &low_res >= d >= &high_res ) ) do (tst_active=0) (all) if ( &BLANK%test_set = false ) then do (tst_active=1) (ref_active=1 and &STRIP%test_set=&test_flag) end if show sum(1) ( ref_active=1 and tst_active=0 ) evaluate ($total_work=$select) show sum(1) ( ref_active=1 and tst_active=1 ) evaluate ($total_test=$select) evaluate ($total_used=$total_work+$total_test) evaluate ($unobserved=$total_theor-$total_read) evaluate ($rejected=$total_read-$total_used) evaluate ($per_unobs=100*($unobserved/$total_theor)) evaluate ($per_reject=100*($rejected/$total_theor)) evaluate ($per_used=100*($total_used/$total_theor)) evaluate ($per_work=100*($total_work/$total_theor)) evaluate ($per_test=100*($total_test/$total_theor)) associate fcalc ( &atom_select ) tselection=( ref_active=1 ) cvselection=( tst_active=1 ) method=FFT {- MODIFIED 8/01/06 -} end show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=auto; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) xray {- END MODIFICATION -} tolerance=0.0 lookup=false end igroup interaction ( &atom_select ) ( &atom_select ) end flags exclude * include xref end if ( &BLANK%ncs_infile = false ) then inline @&ncs_infile end if xray declare name=Isum domain=reciprocal type=real end do (Isum=amplitude(&STRIP%obs_f)^2+ amplitude(remap[&STRIP%twin_oper](&STRIP%obs_f))^2) (ref_active=1) show rms(Isum) (ref_active=1) end evaluate ($rms_Isum=$result) xray declare name=Isum_active domain=reciprocal type=integer end do (Isum_active=1) ( all ) do (Isum_active=0) ( ref_active # 1 ) do (Isum_active=0) ( Isum_active = 1 and h = remap[&STRIP%twin_oper](h) and k = remap[&STRIP%twin_oper](k) and l = remap[&STRIP%twin_oper](l) ) do (Isum_active=0) ( Isum_active = 1 and Isum < 0.3*$rms_Isum ) show sum(1) (Isum_active=1) evaluate ($Isum_ref=$result) end xray show ave(abs(amplitude(&STRIP%obs_f)^2- amplitude(remap[&STRIP%twin_oper](&STRIP%obs_f)^2)) / (amplitude(&STRIP%obs_f)^2+ amplitude(remap[&STRIP%twin_oper](&STRIP%obs_f)^2))) (Isum_active=1) end evaluate ($H=$result) xray show ave((abs(amplitude(&STRIP%obs_f)^2- amplitude(remap[&STRIP%twin_oper](&STRIP%obs_f)^2)) / (amplitude(&STRIP%obs_f)^2+ amplitude(remap[&STRIP%twin_oper](&STRIP%obs_f)^2)))^2) (Isum_active=1) end evaluate ($H2=$result) xray undeclare name=Isum_active domain=reciprocal end undeclare name=Isum domain=reciprocal end end evaluate ($twin_frac_h=0.5-$H) evaluate ($twin_frac_h2=0.5-sqrt(3*$H2)/2) xray predict mode=reciprocal to=fcalc selection=(ref_active=1) atomselection=( &atom_select ) end end {- BEGIN MODIFICATION 8/01/06 -} @CNS_XTALMODULE:scale_and_solvent_grid_search ( bscale=&bscale; sel=( ref_active=1 ); sel_test=( tst_active=1 ); atom_select=( &atom_select ); bulk_sol=&bulk_sol; bulk_mask=&bulk_mask_infile; bulk_atoms=( &atom_select ); sol_auto=&sol_auto; sol_k=&sol_k; sol_b=&sol_b; sol_rad=&sol_rad; sol_shrink=&sol_shrink; fcalc=fcalc; obs_f=&STRIP%obs_f; obs_sigf=&STRIP%obs_sigf; obs_i=$STRIP%obs_i; obs_sigi=$STRIP%obs_sigi; fpart=fbulk; Baniso_11=$Baniso_11; Baniso_22=$Baniso_22; Baniso_33=$Baniso_33; Baniso_12=$Baniso_12; Baniso_13=$Baniso_13; Baniso_23=$Baniso_23; Biso=$Biso_model; sol_k_best=$sol_k_ref; sol_b_best=$sol_b_ref; solrad_best=$solrad_best; shrink_best=$shrink_best; b=b; low_b_flag=$low_b_flag; sol_output=&sol_output; ) {- check the gridding again since the minimum B-factor may have changed -} show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=auto; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) {- END MODIFICATION -} xray @@CNS_XTALMODULE:calculate_r_twin (fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; twin_oper=&STRIP%twin_oper; twin_frac=0.5; sel=(ref_active=1); sel_test=(tst_active=1); print=true; output=OUTPUT; r=$start_r; test_r=$start_test_r;) end xray declare name=i_temp domain=reciprocal type=real end declare name=fc1_temp domain=reciprocal type=real end declare name=fc2_temp domain=reciprocal type=real end do (i_temp=abs(&STRIP%obs_f)^2) (ref_active=1) do (fc1_temp=abs(fcalc+fbulk)^2) (ref_active=1) do (fc2_temp=abs(remap[&STRIP%twin_oper](fcalc+fbulk))^2) (ref_active=1) multiscale anisotropic=false isotropic=true bfmin=-200.0 bfmax=200. set1=i_temp k1=-1 b1=0 set2=fc1_temp k2=-9999 b2=0 set3=fc2_temp k3=-9999 b3=0 selection=(ref_active=1 and not (tst_active=1)) eps=0.00001 ncycle=20 end end evaluate ($twin_frac_model=$k3/($k2+$k3)) xray predict mode=reciprocal to=fcalc selection=(ref_active=1) atomselection=( &atom_select ) end @@CNS_XTALMODULE:calculate_r_twin (fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; twin_oper=&STRIP%twin_oper; twin_frac=$twin_frac_model; sel=(ref_active=1); sel_test=(tst_active=1); print=true; output=OUTPUT; r=$full_r; test_r=$full_test_r;) end set display=&list_outfile end display >>>> results of twinning fraction refinement display >>>> refinement resolution: &low_res - &high_res A if ( $total_test > 0 ) then display >>>> starting twinned r= $start_r[f6.4] twinned free_r= $start_test_r[f6.4] display >>>> final twinned r= $full_r[f6.4] twinned free_r= $full_test_r[f6.4] else display >>>> starting twinned r= $start_r[f6.4] display >>>> final twinned r= $full_r[f6.4] end if display >>>> sg= &STRIP%sg a= &a b= &b c= &c alpha= &alpha beta= &beta gamma= &gamma evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then display >>>> parameter file $counter : &STRIP%parameter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%structure_infile = true ) then display >>>> molecular structure file: automatic evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then display >>>> topology file $counter : &STRIP%topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_link_infile_$counter = true ) then if ( &BLANK%link_infile_$counter = false ) then display >>>> linkage file $counter : &STRIP%link_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%patch_infile = false ) then display >>>> custom patch file = &STRIP%patch_infile end if else display >>>> molecular structure file: &STRIP%structure_infile end if display >>>> input coordinates: &STRIP%coordinate_infile if ( &BLANK%anom_library = false ) then display >>>> anomalous f' f'' library: &STRIP%anom_library end if evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then display >>> reflection file $counter : &STRIP%reflection_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read if ( &BLANK%ncs_infile = false ) then display >>>> ncs= &STRIP%ncs_type ncs file= &STRIP%ncs_infile else display >>>> ncs= none end if if ( &bscale # "no" ) then if ( $low_b_flag = true ) then display >>>> warning: B-correction gave atomic B-values less than zero display >>>> they have been reset to zero end if end if ! ! Begin modification (8/01/06) if ( &bscale = "anisotropic" ) then display >>>> Anisotropic B-factor tensor Ucart of atomic model without isotropic component : display >>>> B11=$Baniso_11[f8.3] B22=$Baniso_22[f8.3] B33=$Baniso_33[f8.3] display >>>> B12=$Baniso_12[f8.3] B13=$Baniso_13[f8.3] B23=$Baniso_23[f8.3] display >>>> Isotropic component added to coordinate array B: $Biso_model[f8.3] elseif ( &bscale = "isotropic" ) then display >>>> B-factor applied to coordinate array B: $Biso_model[f8.3] else display >>>> initial B-factor correction: none end if if ( &bulk_sol = true ) then display >>>> bulk solvent: probe radius=$solrad_best, shrink value=$solrad_best display >>>> bulk solvent: density level= $sol_k_ref e/A^3, B-factor= $sol_b_ref A^2 else display >>>> bulk solvent: false end if {- END MODIFICATION -} if ( &obs_type = "intensity" ) then display >>>> reflections with Iobs/sigma_I < &sigma_cut rejected display >>>> reflections with Iobs > &obs_rms * rms(Iobs) rejected display >>>> reflections with Iobs[&STRIP%twin_oper] = 0 rejected else display >>>> reflections with |Fobs|/sigma_F < &sigma_cut rejected display >>>> reflections with |Fobs| > &obs_rms * rms(Fobs) rejected display >>>> reflections with |Fobs|[&STRIP%twin_oper] = 0 rejected end if xray anomalous=? end if ( $result = true ) then display >>>> anomalous diffraction data was input end if {- MODIFIED 8/01/06 -} display >>>> fft gridding factor = $fft_grid, B factor offset = $fft_b_add A^2, Elimit = $fft_elim {- END MODIFICATION -} display >>>> theoretical total number of refl. in resol. range: $total_theor[I6] ( 100.0 % ) display >>>> number of unobserved reflections (no entry): $unobserved[I6] ( $per_unobs[f5.1] % ) display >>>> number of reflections rejected: $rejected[I6] ( $per_reject[f5.1] % ) display >>>> total number of reflections used: $total_used[I6] ( $per_used[f5.1] % ) display >>>> number of reflections in working set: $total_work[I6] ( $per_work[f5.1] % ) display >>>> number of reflections in test set: $total_test[I6] ( $per_test[f5.1] % ) display display for twinning operator= &STRIP%twin_oper display display using statistical method of Yeates: display = $H[f8.5]: twinning fraction= $twin_frac_h[f5.3] ($Isum_ref reflections used) display = $H2[f8.5]: twinning fraction= $twin_frac_h2[f5.3] ($Isum_ref reflections used) display display using current model: display from LSQ refinement: twinning fraction= $twin_frac_model[f5.3] display stop