{+ file: model_phase.inp +} {+ directory: xtal_util +} {+ description: Generate calculated amplitudes, phases, Hendrickson-Lattman coefficients, FOMs from model(s) +} {+ comments: The output amplitudes and phases include the contribution from bulk solvent. +} {+ authors: Axel T. Brunger and Paul D. Adams +} {+ copyright: Yale University +} {- Guidelines for using this file: - all strings must be quoted by double-quotes - logical variables (true/false) must not be quoted - do not remove any evaluate statements from the file -} {- begin block parameter definition -} define( {============================ coordinates ============================} {* coordinate file *} {===>} coordinate_infile="amy.pdb"; {==================== molecular information ==========================} {* topology files *} {===>} topology_infile_1="CNS_TOPPAR:protein.top"; {===>} topology_infile_2="CNS_TOPPAR:dna-rna.top"; {===>} topology_infile_3="CNS_TOPPAR:water.top"; {===>} topology_infile_4="CNS_TOPPAR:ion.top"; {===>} topology_infile_5="CNS_TOPPAR:carbohydrate.top"; {===>} topology_infile_6=""; {===>} topology_infile_7=""; {===>} topology_infile_8=""; {* linkage files for linear, continuous polymers (protein, DNA, RNA) *} {===>} link_infile_1="CNS_TOPPAR:protein.link"; {===>} link_infile_2="CNS_TOPPAR:dna-rna-pho.link"; {===>} link_infile_3=""; {* parameter files *} {===>} parameter_infile_1="CNS_TOPPAR:protein_rep.param"; {===>} parameter_infile_2="CNS_TOPPAR:dna-rna_rep.param"; {===>} parameter_infile_3="CNS_TOPPAR:water_rep.param"; {===>} parameter_infile_4="CNS_TOPPAR:ion.param"; {===>} parameter_infile_5="CNS_TOPPAR:carbohydrate.param"; {===>} parameter_infile_6=""; {===>} parameter_infile_7=""; {===>} parameter_infile_8=""; {* molecular topology file: optional (leave blank for auto generation) *} {* Auto generation of the molecular topology from the coordinates should only be used if: (1) Each distinct protein, DNA, or RNA chain must have a separate segid (or chainid if the chainid is non-blank). (2) Each contiguous protein, RNA, or RNA chain must not be disrupted by other types of residues or ligands. Rather, these other residues should be listed after protein, RNA/DNA chains. (3) Disulphides are automatically detected based on distances between the sulfur atoms (must be less than 3 A apart). (4) Broken protein/RNA/DNA chains without terminii must be more than 2.5 A apart to be recognized as such. (5) N-linked glycan links are automatically recognized if the bonded atoms are less than 2.5 A apart. (6) Automatic generation cannot be used with alternate conformations. For ligands, the user must make suitable topology and parameter files. For non-standard covalent linkages, the custom patch file should be used. Alternatively, the generate.inp or generate_easy.inp task files can be used to generated the mtf prior to running this task file. *} {===>} structure_infile="amy.mtf"; {* for auto generation: extra linkages and modifications by custom patches *} {===>} patch_infile=""; {====================== crystallographic data ========================} {* space group *} {* use International Table conventions with subscripts substituted by parenthesis *} {===>} sg="P2(1)2(1)2(1)"; {* unit cell parameters in Angstroms and degrees *} {+ table: rows=1 "cell" cols=6 "a" "b" "c" "alpha" "beta" "gamma" +} {===>} a=61.76; {===>} b=40.73; {===>} c=26.74; {===>} alpha=90; {===>} beta=90; {===>} gamma=90; {* anomalous f' f'' library file *} {* If a file is not specified, no anomalous contribution will be included *} {+ choice: "CNS_XRAYLIB:anom_cu.lib" "CNS_XRAYLIB:anom_mo.lib" "" user_file +} {===>} anom_library=""; {* reflection files *} {* specify non-anomalous reflection files before anomalous reflection files. *} {* files must contain unique array names otherwise errors will occur *} {===>} reflection_infile_1="amy.cv"; {===>} reflection_infile_2=""; {===>} reflection_infile_3=""; {===>} reflection_infile_4=""; {* reciprocal space array containing observed amplitudes: required *} {===>} obs_f="fobs"; {* reciprocal space array containing sigma values for amplitudes: required *} {===>} obs_sigf="sigma"; {* reciprocal space array containing test set for cross-validation: optional *} {* required for the calculation of cross-validated sigmaA values *} {===>} test_set="test"; {* flag for selection of test reflections: required for cross-validation *} {* ie. reflections with the test set array equal to this number will be used for cross-validation, all other reflections form the working set *} {===>} test_flag=1; {* reciprocal space array containing observed intensities: optional *} {===>} obs_i=""; {* reciprocal space array containing sigma values for intensities: optional *} {===>} obs_sigi=""; {* output: complex reciprocal space array with model amplitudes and centroid phases from model, includes bulk solvent if used. note: do not use the reserved name "fcalc" *} {===>} out_f="f_model"; {* output: real reciprocal space array with figures-of-merit of model phases derived from sigmaA *} {===>} out_fom="fom_model"; {* output: phase probability distribution *} {* reciprocal space arrays with Hendrickson-Lattman coefficients A,B,C,D from model derived from sigmaA *} {+ table: rows=1 "HL coefficients" cols=4 "A" "B" "C" "D" +} {===>} pa_out="pa_model"; {===>} pb_out="pb_model"; {===>} pc_out="pc_model"; {===>} pd_out="pd_model"; {* resolution limits *} {+ table: rows=1 "resolution" cols=2 "lowest" "highest" +} {===>} low_res=500.0; {===>} high_res=2.0; {* apply rejection criteria to amplitudes or intensities *} {+ choice: "amplitude" "intensity" +} {===>} obs_type="amplitude"; {* Observed data cutoff criteria: applied to amplitudes or intensities *} {* reflections with magnitude(Obs)/sigma < cutoff are rejected. *} {===>} sigma_cut=0.0; {* rms outlier cutoff: applied to amplitudes or intensities *} {* reflections with magnitude(Obs) > cutoff*rms(Obs) will be rejected *} {===>} obs_rms=10000; {=================== non-crystallographic symmetry ===================} {* NCS-restraints/constraints file *} {* see auxiliary/ncs.def *} {===>} ncs_file=""; {============ overall B-factor and bulk solvent corrections ==========} {* overall B-factor correction *} {+ choice: "no" "isotropic" "anisotropic" +} {===>} bscale="anisotropic"; {* bulk solvent correction *} {* a mask is required around the molecule(s). The region outside this mask is the solvent region *} {+ choice: true false +} {===>} bulk_sol=true; {* bulk solvent mask file *} {* mask will be read from O type mask file if a name is given otherwise calculated from coordinates of selected atoms *} {===>} bulk_mask_infile=""; {* automatic bulk solvent parameter optimization for e-density level sol_k (e/A^3) and B-factor sol_b (A^2) *} {+ choice: true false +} {===>} sol_auto=true; {* fixed solvent parameters (used if the automatic option is turned off) *} {+ table: rows=1 "bulk solvent" cols=2 "e-density level sol_k (e/A^3)" "B-factor sol_b (A^2) " +} {===>} sol_k=0.3; {===>} sol_b=50.0; {* optional file with a listing of the results of the automatic bulk solvent optimization *} {===>} sol_output=""; {* solvent mask parameters *} {+ table: rows=1 "bulk solvent" cols=2 "probe radius (A) (usually set to 1)" "shrink radius (A) (usually set to 1)" +} {===>} sol_rad=1.0; {===>} sol_shrink=1.0; {========================== atom selection ===========================} {* select atoms to be included in calculating phases *} {===>} atom_select=(known and not hydrogen); {=================== phase calculation parameters ====================} {* number of bins for sigmaa calculation *} {* this will be determined automatically if a negative value is given otherwise the specified number of bins will be used *} {===>} target_bins=-1; {* memory allocation for FFT calculation *} {* this will be determined automatically if a negative value is given otherwise the specified number of words will be allocated *} {===>} fft_memory=-1; {* calculate FOM using sigmaa *} {* FOMs of 1 will be assigned if sigmaa is not used *} {+ choice: true false +} {===>} use_sigmaa=true; {=========================== output files ============================} {* output reflection file *} {* note: only reflections will be written in specified resolution range that satisfy data selection criteria *} {===>} reflection_outfile="model_phase.hkl"; {* merge input data arrays with output arrays, otherwise only output arrays will be written *} {+ choice: true false +} {===>} merge_inout=false; {===========================================================================} { things below this line do not normally need to be changed } {===========================================================================} ) {- end block parameter definition -} checkversion 1.3 evaluate ($log_level=quiet) if ( $log_level = verbose ) then set message=normal echo=on end else set message=off echo=off end end if if ( &BLANK%structure_infile = true ) then {- read topology files -} topology evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_topology_infile_$counter = true ) then if ( &BLANK%topology_infile_$counter = false ) then @@&topology_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end @CNS_XTALMODULE:mtfautogenerate ( coordinate_infile=&coordinate_infile; convert=true; separate=true; atom_delete=(not known); hydrogen_flag=true; break_cutoff=2.5; disulphide_dist=3.0; carbo_dist=2.5; patch_infile=&patch_infile; O5_becomes="O"; ) else structure @&structure_infile end coordinates @&coordinate_infile end if {- read parameter files -} parameter evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_parameter_infile_$counter = true ) then if ( &BLANK%parameter_infile_$counter = false ) then @@¶meter_infile_$counter end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end xray @CNS_XTALLIB:spacegroup.lib (sg=&sg;sgparam=$sgparam;) a=&a b=&b c=&c alpha=&alpha beta=&beta gamma=&gamma @CNS_XRAYLIB:scatter.lib binresolution &low_res &high_res mapresolution &high_res generate &low_res &high_res evaluate ($counter=1) evaluate ($done=false) while ( $done = false ) loop read if ( &exist_reflection_infile_$counter = true ) then if ( &BLANK%reflection_infile_$counter = false ) then reflection @@&reflection_infile_$counter end end if else evaluate ($done=true) end if evaluate ($counter=$counter+1) end loop read end if ( &BLANK%anom_library = false ) then @@&anom_library else xray anomalous=? end if ( $result = true ) then display Warning: no anomalous library has been specified display no anomalous contribution will used in refinement end if end if evaluate ($obs_i=&obs_i) evaluate ($obs_sigi=&obs_sigi) {- BEGIN MODIFICATION -} evaluate ($array_name=&STRIP%out_f) if ($array_name = "FCALC") then display display error: do not use reserved name "fcalc" for output array display aborting script display abort end if {- END MODIFICATION -} xray if ( &BLANK%obs_f = true ) then display display ********************************************************* display Error: required observed amplitude array is not specified display ********************************************************* display abort else query name=&STRIP%obs_f domain=reciprocal end if ( $object_exist = false ) then display display ************************************************************** display Error: required observed amplitude array &obs_f does not exist display ************************************************************** display abort end if {- note: this array can be of any type -} end if if ( &BLANK%obs_sigf = true ) then display display ***************************************************** display Error: required observed sigma array is not specified display ***************************************************** display abort else query name=&STRIP%obs_sigf domain=reciprocal end if ( $object_exist = false ) then display display ************************************************************* display Error: required observed sigma array &obs_sigf does not exist display ************************************************************* display abort end if if ( $object_type # "REAL" ) then display display ********************************************************************** display Error: required observed sigma array &obs_sigf has the wrong data type display ********************************************************************** display abort end if end if if ( &BLANK%test_set = false ) then query name=&STRIP%test_set domain=reciprocal end if ( $object_exist = false ) then display display ********************************************** display Error: test set array &test_set does not exist display ********************************************** display abort end if {- test set array can be integer or real -} if ( $object_type = "COMPLEX" ) then display display ******************************************************* display Error: test set array &test_set has the wrong data type display ******************************************************* display abort end if end if query name=fcalc domain=reciprocal end if ( $object_exist = false ) then declare name=fcalc domain=reciprocal type=complex end end if declare name=fbulk domain=reciprocal type=complex end do (fbulk=0) ( all ) query name=&STRIP%obs_f domain=reciprocal end declare name=fobs_orig domain=reciprocal type=$object_type end declare name=sigma_orig domain=reciprocal type=real end do (fobs_orig=&STRIP%obs_f) (all) do (sigma_orig=&STRIP%obs_sigf) (all) if ( &BLANK%obs_i = false ) then query name=&STRIP%obs_i domain=reciprocal end declare name=iobs_orig domain=reciprocal type=$object_type end declare name=sigi_orig domain=reciprocal type=real end do (iobs_orig=&STRIP%obs_i) (all) do (sigi_orig=&STRIP%obs_sigi) (all) end if if ( &obs_type = "intensity" ) then if ( &BLANK%obs_i = true ) then display Error: observed intensity array is undefined display aborting script abort end if evaluate ($reject_obs=&obs_i) evaluate ($reject_sig=&obs_sigi) else evaluate ($reject_obs=&obs_f) evaluate ($reject_sig=&obs_sigf) end if declare name=ref_active domain=reciprocal type=integer end declare name=tst_active domain=reciprocal type=integer end do (ref_active=0) ( all ) do (ref_active=1) ( ( $STRIP%reject_sig # 0 ) and ( &low_res >= d >= &high_res ) ) statistics overall completeness selection=( ref_active=1 ) end evaluate ($total_compl=$expression1) show sum(1) ( ref_active=1 ) evaluate ($total_read=$select) evaluate ($total_theor=int(1./$total_compl * $total_read)) show rms (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_high=$result*&obs_rms) show min (amplitude($STRIP%reject_obs)) ( ref_active=1 ) evaluate ($obs_low=$result) do (ref_active=0) ( all ) do (ref_active=1) ( ( amplitude($STRIP%reject_obs) > &sigma_cut*$STRIP%reject_sig ) and ( $STRIP%reject_sig # 0 ) and ( $obs_low <= amplitude($STRIP%reject_obs) <= $obs_high ) and ( &low_res >= d >= &high_res ) ) do (tst_active=0) (all) if ( &BLANK%test_set = false ) then do (tst_active=1) (ref_active=1 and &STRIP%test_set=&test_flag) end if show sum(1) ( ref_active=1 and tst_active=0 ) evaluate ($total_work=$select) show sum(1) ( ref_active=1 and tst_active=1 ) evaluate ($total_test=$select) evaluate ($total_used=$total_work+$total_test) evaluate ($unobserved=$total_theor-$total_read) evaluate ($rejected=$total_read-$total_used) evaluate ($per_unobs=100*($unobserved/$total_theor)) evaluate ($per_reject=100*($rejected/$total_theor)) evaluate ($per_used=100*($total_used/$total_theor)) evaluate ($per_work=100*($total_work/$total_theor)) evaluate ($per_test=100*($total_test/$total_theor)) associate fcalc ( &atom_select ) tselection=( ref_active=1 ) cvselection=( tst_active=1 ) method=FFT {- MODIFIED 2/15/06 -} end show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=auto; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) {- END MODIFICATION -} if ( &BLANK%ncs_file = false ) then inline @&ncs_file end if xray do (&STRIP%obs_f=fobs_orig) (all) do (&STRIP%obs_sigf=sigma_orig) (all) if ( &BLANK%obs_i = false ) then do (&STRIP%obs_i=iobs_orig) (all) do (&STRIP%obs_sigi=sigi_orig) (all) end if end xray predict mode=reciprocal to=fcalc selection=(ref_active=1) atomselection=( &atom_select ) end end {- BEGIN MODIFICATION -} @CNS_XTALMODULE:scale_and_solvent_grid_search ( bscale=&bscale; sel=( ref_active=1 ); sel_test=( tst_active=1 ); atom_select=( &atom_select ); bulk_sol=&bulk_sol; bulk_mask=&bulk_mask_infile; bulk_atoms=( &atom_select ); sol_auto=&sol_auto; sol_k=&sol_k; sol_b=&sol_b; sol_rad=&sol_rad; sol_shrink=&sol_shrink; fcalc=fcalc; obs_f=&STRIP%obs_f; obs_sigf=&STRIP%obs_sigf; obs_i=$STRIP%obs_i; obs_sigi=$STRIP%obs_sigi; fpart=fbulk; ! ! Begin modification (6/28/06) Baniso_11=$Baniso_11; Baniso_22=$Baniso_22; Baniso_33=$Baniso_33; Baniso_12=$Baniso_12; Baniso_13=$Baniso_13; Baniso_23=$Baniso_23; Biso=$Biso_model; ! End modification ! sol_k_best=$sol_k_ref; sol_b_best=$sol_b_ref; solrad_best=$solrad_best; shrink_best=$shrink_best; b=b; low_b_flag=$low_b_flag; sol_output=&sol_output; ) xray @@CNS_XTALMODULE:calculate_r ( fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; sel=( ref_active=1 ); sel_test=( tst_active=1 ); print=true; output=OUTPUT; r=$start_r; test_r=$start_test_r;) end {- check the gridding again since the minimum B-factor may have changed -} show min ( b ) ( &atom_select ) evaluate ($b_min=$result) @@CNS_XTALMODULE:fft_parameter_check ( d_min=&high_res; b_min=$b_min; grid=auto; fft_memory=&fft_memory; fft_grid=$fft_grid; fft_b_add=$fft_b_add; fft_elim=$fft_elim; ) {- END MODIFICATION -} xray declare name=m domain=reciprocal type=complex end declare name=mod_fom domain=reciprocal type=real end declare name=mod_x domain=reciprocal type=real end declare name=mod_pa domain=reciprocal type=real end declare name=mod_pb domain=reciprocal type=real end declare name=mod_pc domain=reciprocal type=real end declare name=mod_pd domain=reciprocal type=real end declare name=mod_dd domain=reciprocal type=real end do (mod_pa=0) (all) do (mod_pb=0) (all) do (mod_pc=0) (all) do (mod_pd=0) (all) if ( &use_sigmaa = true ) then @CNS_XTALMODULE:fomsigmaacv ( sig_sigacv=0.07; mbins=&target_bins; statistics=true; fobs=&STRIP%obs_f; fcalc=fcalc; fpart=fbulk; test=tst_active; sel=(ref_active=1); sel_test=(tst_active=1); fom=mod_fom; x=mod_x; pa=mod_pa; pb=mod_pb; pc=mod_pc; pd=mod_pd; dd=mod_dd; ) else do (mod_pa=10*cos(phase(fcalc+fbulk))) ( ref_active=1 and centric ) do (mod_pb=10*sin(phase(fcalc+fbulk))) ( ref_active=1 and centric ) do (mod_pa=1000*cos(phase(fcalc+fbulk))) ( ref_active=1 and acentric ) do (mod_pb=1000*sin(phase(fcalc+fbulk))) ( ref_active=1 and acentric ) do (mod_pc=0) ( ref_active=1 ) do (mod_pd=0) ( ref_active=1 ) do (mod_fom=1) ( ref_active=1 ) end if end xray if ( &BLANK%pa_out = true ) then display display ********************************************************* display Error: output Hendrickson-Lattman array A not specified display ********************************************************* display abort elseif ( &BLANK%pb_out = true ) then display display ********************************************************* display Error: output Hendrickson-Lattman array B not specified display ********************************************************* display abort elseif ( &BLANK%pc_out = true ) then display display ********************************************************* display Error: output Hendrickson-Lattman array C not specified display ********************************************************* display abort elseif ( &BLANK%pd_out = true ) then display display ********************************************************* display Error: output Hendrickson-Lattman array D not specified display ********************************************************* display abort elseif ( &BLANK%out_fom = true ) then display display ************************************************* display Error: output figure of merit array not specified display ************************************************* display abort elseif ( &BLANK%out_f = true ) then display display ********************************************************** display Error: output complex structure factor array not specified display ********************************************************** display abort end if {- the output arrays must not already exist -} declare name=&STRIP%pa_out domain=reciprocal type=real end declare name=&STRIP%pb_out domain=reciprocal type=real end declare name=&STRIP%pc_out domain=reciprocal type=real end declare name=&STRIP%pd_out domain=reciprocal type=real end group type=hl object=&STRIP%pa_out object=&STRIP%pb_out object=&STRIP%pc_out object=&STRIP%pd_out end declare name=&STRIP%out_fom domain=reciprocal type=real end declare name=&STRIP%out_f domain=reciprocal type=complex end {- reinstall original (unscaled) amplitude, sigma, and intensity arrays -} do (&STRIP%obs_f=fobs_orig) (all) do (&STRIP%obs_sigf=sigma_orig) (all) if ( &BLANK%obs_i = false ) then do (&STRIP%obs_i=iobs_orig) (all) do (&STRIP%obs_sigi=sigi_orig) (all) end if end xray do (&STRIP%pa_out=mod_pa) (all) do (&STRIP%pb_out=mod_pb) (all) do (&STRIP%pc_out=mod_pc) (all) do (&STRIP%pd_out=mod_pd) (all) do (&STRIP%out_f=fcalc+fbulk) (all) do (&STRIP%out_fom=mod_fom) (all) end xray undeclare name=fobs_orig domain=reciprocal end undeclare name=sigma_orig domain=reciprocal end undeclare name=iobs_orig domain=reciprocal end undeclare name=sigi_orig domain=reciprocal end undeclare name=mod_pa domain=reciprocal end undeclare name=mod_pb domain=reciprocal end undeclare name=mod_pc domain=reciprocal end undeclare name=mod_pd domain=reciprocal end undeclare name=mod_fom domain=reciprocal end undeclare name=mod_x domain=reciprocal end undeclare name=mod_dd domain=reciprocal end undeclare name=ref_active domain=reciprocal end undeclare name=tst_active domain=reciprocal end undeclare name=m domain=reciprocal end undeclare name=fcalc domain=reciprocal end declare ? end {- modification: only selected reflections will be written -} set display=&reflection_outfile end end @CNS_XTALMODULE:write_hkl_header (sg=&STRIP%sg; sgparam=$sgparam;) xray if ( &merge_inout = true ) then write reflection output=&reflection_outfile sele=( $STRIP%reject_sig # 0 and ( &low_res >= d >= &high_res ) ) end else write reflection &STRIP%out_f &STRIP%out_fom &STRIP%pa_out &STRIP%pb_out &STRIP%pc_out &STRIP%pd_out output=&reflection_outfile sele=( $STRIP%reject_sig # 0 and ( &low_res >= d >= &high_res ) ) end end if set display=OUTPUT end end stop