multiscale {} end :== ffk= --{Adjust overall scale. Default=0} selection= --{Which structure factors to use in scaling. Default=(all)} set1= --{Reference set for scaling. Default=none} k1= --{Scale factor for the reference set. Default=-1} b1= --{Isotropic B-factor for the reference set (if anisotropic=false). Default=0} b1_11= b1_22= b1_33= b1_12= b1_13= b1_23= --{Anisotropic B-factor for the reference set (if anisotropic=true). Default=0} set2= --{Set to be scaled. Default=none} k2= --{Scale factor for this set. Default=none} b2= --{Isotropic B-factor for this set (if anisotropic=false). Default=none} b2_11= b2_22= b2_33= b2_12= b2_13= b2_23= --{Anisotropic B-factor for this set (if anisotropic=true). Default=none} set<3..20>= --{Set to be scaled. Default=none} k<3..20>= --{Scale factor for this set. Default=none} b<3..20>= --{Isotropic B-factor for this set (if anisotropic=false). Default=none} b<3..20>_11= b<3..20>_22= b<3..20>_33= b<3..20>_12= b<3..20>_13= b<3..20>_23= --{Anisotropic B-factor for this set (if anisotropic=true). Default=none} mode=target|tlow --{default=target} --{Least-squares optimize parameters for the target} --{================================================} update= --{Update parameters and multiply by overall scale factor. Default=true} anisotropic= --{If true then the anisotropic components are refined, and isotropic parameters are ignored. Default=false} isotropic= --{If true then the isotropic thermal factor or anisotropic components are refined. If false then the trace is restricted to zero. Default=true} restriction=all|offd|none --{Restrictions due to symmetry for anisotropic B-factor refinement (use with caution - this option is not accurate. Rather do the refinement in P1): - all: all parameters (default) - offd: off-diagonal only - none: no restrictions} --{The isotropic target to be minimized is: Target = sum(hkl) ( k1 exp(-b1 s^2/4) operand(set1) + k2 exp(-b2 s^2/4) operand(set2) + ... k20 exp(-b20 s^2/4) operand(set20) ) The anisotropic target to be minimized is: Target = sum(hkl) ( k1 exp( -(b1_11 h^2 a*^2 + b1_22 k^2 b*^2 + b1_33 l^2 c*^2 + 2 b1_12 h k a* b* + 2 b1_13 h l a* c* + 2 b1_23 k l b* c*)/4) operand(set1) + ... k20 exp( -(b20_11 h^2 a*^2 + b20_22 k^2 b*^2 + b20_33 l^2 c*^2 + 2 b20_12 h k a* b* + 2 b20_13 h l a* c* + 2 b20_23 k l b* c*)/4) operand(set20) ) The sum is performed over selected reflections. Optimization is performed by the method of least-squares. Scale and B-factor parameters are fixed for the reference set, and for any value that is defined and not -9999. The reference set is the first set with k=-1. The results of optimization are returned in symbols: $k1, $k2, $k3 .... $k20 $b1, $b2, $b3 .... $b20 for isotropic B-factors $b2_11, $b2_12 ... $b_33 for anisotropic B-factors} --{Least squares minimization options:} --{===================================} ncyc= --{Number of least-squares minimization cycles. Default=30} diag= --{Diagonal approximation for least-squares matrix. Default=0} eps= --{Epsilon for convergence test. Default: 0.001} ksmin= --{The minimum kscale restraint allowed. Default=0.0} bmin= --{The minimum bscale restraint allowed. Default=-500.0} bmax= --{The maximum bscale restraint allowed. Default=500.0} uniform=k|b --{Uniform=k: refine one uniform scale factor. Uniform=b: refine one uniform B-factor. Default=none} kinitial= --{The initial scale factor for all non-fixed scale factors. Default=1.0} binitial= --{The initial B-factor for all non-fixed B-factors. Default=0.0} --{Options for overall scale factors} --{=================================} resk= --{The resolution boundary for two overall scale factors. Default=0.0A} ffk1= --{Fixed overall scale factor for low resolution range. Default=0.0A} ffk2= --{Fixed overall scale factor for high resolution range. Default=0.0A}