! #include "copyright.h" #include "../include/dprec.fh" #include "../include/assert.fh" !--------------------------------------------------------- ! Code for doing QM periodic boundaries ! Ewald summation. ! ! Written by Ross Walker (TSRI 2005) ! ! Theory is based on: ! Nam, K., Gao, J., York, D.M., JCTC. 2005, 1, 2-13. !---------------------------------------------------------- subroutine allocate_qmewald(natm) use qmmm_module, only : qmmm_nml, qmmm_struct, qmewald, qmmm_scratch implicit none integer, intent(in) :: natm integer :: ier=0 allocate (qmewald%mmpot(qmmm_struct%nquant_nlink), stat=ier ) !mmpot = QM-MM REQUIRE(ier == 0) !Dealocated in deallocate qmmm allocate (qmewald%qmpot(qmmm_struct%nquant_nlink), stat=ier ) !qmpot = QM-QM REQUIRE(ier == 0) !Dealocated in deallocate qmmm allocate (qmewald%coulpot(qmmm_struct%nquant_nlink), stat=ier ) !coulpot = QM-MM direct Coulombic REQUIRE(ier == 0) !Dealocated in deallocate qmmm !And for the reciprocal force array that stores the forces on the MM atoms due to the K space if (.not. qmmm_nml%qm_pme) then allocate (qmewald%d_ewald_mm(3,natm), stat=ier ) REQUIRE(ier == 0) else !We need an natom long scratch array allocate(qmmm_scratch%qm_pme_scratch(natm), stat=ier ) REQUIRE(ier == 0) end if return end subroutine allocate_qmewald subroutine qm_ewald_setup(totkq,kappa, kmaxqx,kmaxqy,kmaxqz,ksqmaxq, natom,nquant, nlink) !Initial setup for qm_ewald - should be called only once per run. !This will calculate the total k space vectors and other related values. !These values should be constant during a sander run. !Also allocates memory use qmmm_module, only : qmewald, qmmm_nml, qmmm_mpi use nblist, only : volume implicit none !Passed in integer, intent(inout) :: totkq integer, intent(in) :: kmaxqx, kmaxqy, kmaxqz, ksqmaxq integer, intent(in) :: natom !Total number of real atoms. integer, intent(in) :: nquant, nlink _REAL_, intent(inout) ::kappa !Local integer :: kx,ky,kz,ksy,ksz,ksq integer :: mpi_division integer :: ier #ifdef MPI include 'mpif.h' integer :: i, istartend(2) !PART OF WORKAROUND FOR BUGGY INTEL COMPILER integer, allocatable, dimension(:) :: gather_array #endif ! Set up the kappa value (Ewald coefficient) if not set by the user: should be different from the one used in sander if (kappa<0) then kappa=(10.0d0)/ (volume**0.333333333d0) endif !Calculate the total number of kspace vectors totkq = 0 do kx = 0, kmaxqx if (kx == 0) then ksy = 0 else ksy = -kmaxqy end if do ky = ksy, kmaxqy if (kx == 0 .AND. ky == 0) then ksz = 1 else ksz = -kmaxqz end if do kz = ksz, kmaxqz ksq = kx*kx + ky*ky + kz*kz if (ksq <= ksqmaxq .and. ksq /= 0) totkq = totkq + 1 end do end do end do !Now we need to allocate enough memory for the kvectors and the kvector exponential tables. if (totkq == 0) then call sander_bomb('qm_ewald_setup','INVALID NUMBER OF K VECTORS','Need totkq > 0') end if mpi_division = (totkq + (qmmm_mpi%numthreads-1))/qmmm_mpi%numthreads qmmm_mpi%kvec_end = min(mpi_division*(qmmm_mpi%mytaskid+1),totkq) qmmm_mpi%kvec_start = min(mpi_division*qmmm_mpi%mytaskid+1,totkq+1) qmmm_mpi%totkq_count = qmmm_mpi%kvec_end-qmmm_mpi%kvec_start+1 #ifdef MPI if (qmmm_mpi%commqmmm_master) then write (6,'(/a)') '|QMMM: KVector division among threads:' write (6,'(a)') '|QMMM: Start End Count' !The FOLLOWING CODE SHOULD WORK FINE BUT THE INTEL COMPILER SEEMS TO MISCOMPILE !THE i=1,iminus loop DUE TO A COMPILER BUG. SO I HAVE WRITTEN A WORK AROUND BELOW. ! !Already know my own. ! write(6,'(a,i8,a,i8,a,i8,a)') & ! '|QMMM: Thread( 0): ',qmmm_mpi%kvec_start,'->',qmmm_mpi%kvec_end, & ! ' (',qmmm_mpi%kvec_end-qmmm_mpi%kvec_start+1,')' ! iminus = qmmm_mpi%numthreads-1 ! do i = 1, iminus ! call mpi_recv(istartend,2,mpi_integer,i,i,qmmm_mpi%commqmmm,istatus,ier) ! write(6,'(a,i4,a,i8,a,i8,a,i8,a)') & ! '|QMMM: Thread(',i,'): ',istartend(1),'->',istartend(2), & ! ' (',istartend(2)-istartend(1)+1,')' ! end do ! else ! !Send a message to the master with our counts in. ! istartend(1) = qmmm_mpi%kvec_start ! istartend(2) = qmmm_mpi%kvec_end ! call mpi_ssend(istartend,2,mpi_integer,0,qmmm_mpi%mytaskid,qmmm_mpi%commqmmm,ier) ! end if end if if (qmmm_mpi%commqmmm_master) then !WORKAROUND FOR BUGGY INTEL COMPILER allocate( gather_array(2*qmmm_mpi%numthreads), stat=ier) REQUIRE(ier == 0) end if istartend(1) = qmmm_mpi%kvec_start istartend(2) = qmmm_mpi%kvec_end call mpi_gather(istartend, 2, MPI_INTEGER, gather_array, 2, MPI_INTEGER, 0, qmmm_mpi%commqmmm, ier) if (qmmm_mpi%commqmmm_master) then do i = 1, qmmm_mpi%numthreads write(6,'(a,i4,a,i8,a,i8,a,i8,a)') & '|QMMM: Thread(',i-1,'): ',gather_array(2*i-1),'->',gather_array(2*i), & ' (',gather_array(2*i)-gather_array(2*i-1)+1,')' end do end if if (qmmm_mpi%commqmmm_master) then deallocate( gather_array, stat=ier) REQUIRE(ier == 0) end if #endif !We only allocate these as the number of kvectors this cpu does since totkq_count is !qmmm_mpi%kvec_end-qmmm_mpi%kvec_start+1 allocate ( qmewald%kvec(qmmm_mpi%totkq_count),stat=ier ) REQUIRE(ier == 0) allocate ( qmewald%dkvec(3,qmmm_mpi%totkq_count),stat=ier ) REQUIRE(ier == 0) allocate ( qmewald%dmkv(3,qmmm_mpi%totkq_count),stat=ier ) REQUIRE(ier == 0) if (.not. qmmm_nml%qm_pme) then allocate ( qmewald%ktable(6,natom,qmmm_mpi%totkq_count), stat=ier ) REQUIRE(ier == 0) end if allocate ( qmewald%qmktable(6,nquant+nlink,qmmm_mpi%totkq_count), stat=ier ) REQUIRE(ier == 0) return end subroutine qm_ewald_setup subroutine qm_ewald_calc_kvec(vectors,dvectors,dmkv, kmaxqx, kmaxqy, kmaxqz, ksqmaxq) !This routine calculated the wave-vector arrays for K-space ewald summation. !This routine fills kvec with the vectors. use nblist, only : volume, recip use constants, only : PI2, INVPI, TWOPI, FOURPI use qmmm_module, only : qmmm_mpi, qmewald implicit none !For ew_coeff !#include "ew_pme_recip.h"--replaced by qmewald%kappa--TL !Passed in integer, intent(in) :: kmaxqx, kmaxqy, kmaxqz, ksqmaxq _REAL_, intent(out) :: vectors(qmmm_mpi%totkq_count) !Will contain the calculated vectors _REAL_, intent(out) :: dvectors(3,qmmm_mpi%totkq_count) !Will contain the calculated vectors _REAL_, intent(out) :: dmkv(3,qmmm_mpi%totkq_count) !Will contain the calculated vectors !Local _REAL_ beta, vfact _REAL_ rkx(3), rky(3), rkz(3), rksq _REAL_ mkv(3), vector integer :: loop_count, kx, ky, kz, ksq integer :: ksy, ksz, kvec_count beta = PI2 / (qmewald%kappa*qmewald%kappa) vfact = INVPI/volume loop_count = 0 kvec_count = 0 do kx = 0, kmaxqx if (kx == 0) then ksy = 0 else ksy = -kmaxqy end if rkx(1:3) = kx * recip(1:3,1) do ky = ksy, kmaxqy if (kx == 0 .and. ky == 0) then ksz = 1 else ksz = -kmaxqz end if rky(1:3) = ky * recip(1:3,2) do kz = ksz, kmaxqz rkz(1:3) = kz * recip(1:3,3) ksq = kx*kx + ky*ky + kz*kz if (ksq <= ksqmaxq .and. ksq /= 0) then kvec_count = kvec_count+1 if (kvec_count >= qmmm_mpi%kvec_start .and. kvec_count <= qmmm_mpi%kvec_end) then !only do this threads subset. loop_count = loop_count + 1 mkv(1:3) = rkx(1:3) + rky(1:3) + rkz(1:3) rksq = mkv(1)*mkv(1) + mkv(2)*mkv(2) + mkv(3)*mkv(3) dmkv(1:3,loop_count) = mkv(1:3) * TWOPI vector = vfact*exp(-beta*rksq)/rksq vectors(loop_count) = vector dvectors(1:3,loop_count) = FOURPI * mkv(1:3) * vector end if end if end do end do end do !Sanity check to see if loop_count ends up equalling totkq. If it doesn't something has !gone terribly wrong. We should never trigger this. if (kvec_count /= qmewald%totkq .or. loop_count /= qmmm_mpi%totkq_count) & call sander_bomb('qm_ewald_calc_kvec','INVALID NUMBER OF K VECTORS', & 'Need ipt = totkq, should never happen.') return end subroutine qm_ewald_calc_kvec subroutine qm_ewald_calc_ktable(natom, nquant, nlink, coords, dmkv) !Written by Ross Walker, TSRI(2005) !Updated for qm_pme by Ross Walker Nov 2005. !When doing qm_pme only the QM part of the ktable is required. use nblist, only : recip use constants, only : TWOPI, HALFPI use qmmm_module, only : qmmm_struct, qmmm_nml, qmewald, qmmm_mpi implicit none !Passed in integer, intent(in) :: natom, nquant, nlink !Total atoms (exc link atoms), real quantum atoms _REAL_, intent(in) :: coords(3,natom) !Complete unimaged coordinate array _REAL_, intent(in) :: dmkv(3,qmmm_mpi%totkq_count) !Local _REAL_ :: mkv(3) _REAL_ :: xcoord, ycoord, zcoord integer :: loop_count !Kvector we are working on integer :: i, ii, qmid, im loop_count = 0 ! do loop_count = 1, totkq do ii = qmmm_mpi%kvec_start, qmmm_mpi%kvec_end loop_count = loop_count+1 mkv(1:3) = dmkv(1:3,loop_count) if (.not. qmmm_nml%qm_pme) then !The coordinates of mm_link_pair atoms should have been replaced with !the link atom coordinates hence the below loop should calculate all non-link MM atoms !all real QM atoms and ALL link atoms. We will then extract out the link atoms. non-link MM !atoms have had their charge neutralised so not calculating their entry in the ktable should !not be a problem. do i = 1, natom !For X coordinates xcoord = mkv(1)*coords(1,i) ycoord = mkv(2)*coords(2,i) zcoord = mkv(3)*coords(3,i) !cache the values for doing a vectored cos qmewald%ktable(1,i,loop_count) = xcoord qmewald%ktable(2,i,loop_count) = xcoord - HALFPI !sin(x) = cos(x-(pi/2)) !For Y coordinates qmewald%ktable(3,i,loop_count) = ycoord qmewald%ktable(4,i,loop_count) = ycoord - HALFPI !For Z coordinates qmewald%ktable(5,i,loop_count) = zcoord qmewald%ktable(6,i,loop_count) = zcoord - HALFPI end do !i=1,natom !Do a vectored cosine -> since we subtracted pi/2 from every other x,y,z value so we !will end up with cos,sin,cos,sin... call vdcos(6*natom,qmewald%ktable(1,1,loop_count),qmewald%ktable(1,1,loop_count)) !Cache the qm atom values for use later so we can access them linearly in memory do i = 1, nquant qmid = qmmm_struct%iqmatoms(i) qmewald%qmktable(1:6,i,loop_count) = qmewald%ktable(1:6,qmid,loop_count) end do !We also need to cache the QM link atoms values. do i = 1,nlink im = nquant + i qmid = qmmm_struct%link_pairs(1,i) !position of MM link pair atom in main amber array qmewald%qmktable(1:6,im,loop_count) = qmewald%ktable(1:6,qmid,loop_count) end do else !if we are using pme for the QM-QM interaction we only need the qm ktable !We have to use the original unimaged coordinates for this as that was what the !reciprocal lattice vectors were calculated for. do i = 1, nquant qmid = qmmm_struct%iqmatoms(i) xcoord = mkv(1)*coords(1,qmid) ycoord = mkv(2)*coords(2,qmid) zcoord = mkv(3)*coords(3,qmid) !cache the values for doing a vectored cos qmewald%qmktable(1,i,loop_count) = xcoord qmewald%qmktable(2,i,loop_count) = xcoord - HALFPI !sin(x) = cos(x-(pi/2)) !For Y coordinates qmewald%qmktable(3,i,loop_count) = ycoord qmewald%qmktable(4,i,loop_count) = ycoord - HALFPI !For Z coordinates qmewald%qmktable(5,i,loop_count) = zcoord qmewald%qmktable(6,i,loop_count) = zcoord - HALFPI end do !Do a vectored cosine -> since we subtracted pi/2 from every other x,y,z value so we !will end up with cos,sin,cos,sin... call vdcos(6*nquant,qmewald%qmktable(1,1,loop_count),qmewald%qmktable(1,1,loop_count)) !Do the link atoms as well. do i = 1, nlink im = nquant + i qmid = qmmm_struct%iqmatoms(im) xcoord = mkv(1)*coords(1,qmid) ycoord = mkv(2)*coords(2,qmid) zcoord = mkv(3)*coords(3,qmid) !cache the values for doing a vectored cos qmewald%qmktable(1,im,loop_count) = xcoord qmewald%qmktable(2,im,loop_count) = xcoord - HALFPI !sin(x) = cos(x-(pi/2)) !For Y coordinates qmewald%qmktable(3,im,loop_count) = ycoord qmewald%qmktable(4,im,loop_count) = ycoord - HALFPI !For Z coordinates qmewald%qmktable(5,im,loop_count) = zcoord qmewald%qmktable(6,im,loop_count) = zcoord - HALFPI end do if (nlink>0) call vdcos(6*nlink,qmewald%qmktable(1,nquant+1,loop_count), & qmewald%qmktable(1,nquant+1,loop_count)) end if end do return end subroutine qm_ewald_calc_ktable subroutine qm_ewald_mm_pot(qm_xcrd, npairs, qm_coords, natom,rij_incore, rij_data,mmcharge,kvec) !Calculates the potential at the QM atom position due to the ewald sum of the MM atoms. !Called once per MD step, before doing the SCF since the MM charges and positions don't change !during the SCF. !Written by Ross Walker (TSRI,2005) !Updated for QM_PME by Ross Walker Nov 2005. When doing the QM-MM interaction using PME !only the real space part is calculated here as the reciprocal space part should already !have been calculated and filled into mmpot. !Only REAL qm atoms see mm atoms. use constants, only : PI, INVSQRTPI, zero, one, two, AU_TO_EV use nblist, only : volume use qmmm_module, only: qmmm_struct,qmewald, qmmm_mpi, qmmm_nml implicit none #include "qm2_array_locations.h" !Passed in integer, intent(in) :: npairs !Number of QM-MM pairs per QM atom. All QM atoms have the same list. integer, intent(in) :: natom !Total number of atoms in system MM+QM not including link atoms. _REAL_, intent(in) :: qm_coords(3,*) !Coordinates of the QM atoms _REAL_, intent(in) :: qm_xcrd(4,npairs) !Wrapped qm coordinates, in same order as the pair list, laid out as ! x,y,z,charge,x,y,z,charge... _REAL_, intent(in) :: rij_data(QMMMNORIJ,*) !Null if not rij_incore _REAL_, intent(in) :: mmcharge(natom) !Amber's charge array but in electron units. _REAL_, intent(in) :: kvec(qmmm_mpi%totkq_count) logical, intent(in) :: rij_incore !Are RIJ values already stored? !Local _REAL_ :: erfcx, mmpottmp _REAL_ :: vec(3), r2, oneRIJ, RIJ _REAL_ :: x_cos, y_cos, z_cos, x_sin, y_sin, z_sin _REAL_ :: ktgs(8), ksum, mmchg, qmi(3), kvectmp _REAL_ :: kappa, total_mm_charge integer :: i, j, loop_count !For ew_coeff #include "ew_pme_recip.h" if (.NOT. qmmm_nml%qm_pme) then !====================================== ! Calculate K Space Potential !====================================== !This is done between QM and MM atoms. Compute the potential at the QM atom !position for the K-space Ewald summation. qmewald%mmpot(1:qmmm_struct%nquant_nlink) = 0.0d0 !Zeros entire array loop_count = 0 ! do i = 1, totkq do i = qmmm_mpi%kvec_start, qmmm_mpi%kvec_end loop_count = loop_count + 1 ktgs(1:8) = zero kvectmp = two*kvec(loop_count) do j = 1, natom !Do this over all MM atoms (skip QM) ! if (.not. qm_atom_mask(j)) then !Quicker just to loop through all atoms, mmchg will be zero for QM atoms !it is an MM atom x_cos =qmewald%ktable(1,j,loop_count) x_sin =qmewald%ktable(2,j,loop_count) y_cos =qmewald%ktable(3,j,loop_count) y_sin =qmewald%ktable(4,j,loop_count) z_cos =qmewald%ktable(5,j,loop_count) z_sin =qmewald%ktable(6,j,loop_count) mmchg = mmcharge(j) ktgs(1) = ktgs(1) + mmchg * x_cos*y_cos*z_cos ktgs(2) = ktgs(2) + mmchg * x_sin*y_sin*z_sin ktgs(3) = ktgs(3) + mmchg * x_cos*y_cos*z_sin ktgs(4) = ktgs(4) + mmchg * x_cos*y_sin*z_cos ktgs(5) = ktgs(5) + mmchg * x_cos*y_sin*z_sin ktgs(6) = ktgs(6) + mmchg * x_sin*y_sin*z_cos ktgs(7) = ktgs(7) + mmchg * x_sin*y_cos*z_sin ktgs(8) = ktgs(8) + mmchg * x_sin*y_cos*z_cos ! end if end do !Now loop over quantum atoms do j = 1, qmmm_struct%nquant_nlink ksum = zero x_cos =qmewald%qmktable(1,j, loop_count) x_sin =qmewald%qmktable(2,j, loop_count) y_cos =qmewald%qmktable(3,j, loop_count) y_sin =qmewald%qmktable(4,j, loop_count) z_cos =qmewald%qmktable(5,j, loop_count) z_sin =qmewald%qmktable(6,j, loop_count) ksum = ksum + x_cos*y_cos*z_cos*ktgs(1) ksum = ksum + x_sin*y_sin*z_sin*ktgs(2) ksum = ksum + x_cos*y_cos*z_sin*ktgs(3) ksum = ksum + x_cos*y_sin*z_cos*ktgs(4) ksum = ksum + x_cos*y_sin*z_sin*ktgs(5) ksum = ksum + x_sin*y_sin*z_cos*ktgs(6) ksum = ksum + x_sin*y_cos*z_sin*ktgs(7) ksum = ksum + x_sin*y_cos*z_cos*ktgs(8) qmewald%mmpot(j) = qmewald%mmpot(j) + ksum*kvectmp end do end do !====================================== ! End Calculate K Space Potential !====================================== end if !not qm_pme !================================== ! Calculate Real Space Potential !================================== !This is between QM and MM atoms, since the charge on the MM atoms does not change it !needs only be done once on each MD step before the SCF is done. !This is to correct for the overcounting in the reciprocal calculation. !TL: ! The usage of Ewald coefficient must be consistent: if (qmmm_nml%qm_pme) then kappa=ew_coeff ! The Ewald coefficient from MM part should be used if MM PME contribution is used. else kappa=qmewald%kappa ! Otherwise the Ewald coefficient from QM part should be used. end if ! TL: ! Calculate the direct Coulombic interactions between QM and MM atoms within qm_cut ! This information is useful to verify/compare Ewald calculations qmmm_struct%coulombic_eng=zero ! TL: ! The total MM charge is needed to calculate the "self" plasma term missed in the MM Ewald part total_mm_charge=zero do j = 1, natom total_mm_charge=total_mm_charge+mmcharge(j) end do total_mm_charge=-PI/(kappa*kappa)/volume*total_mm_charge if (rij_incore) then !Our QM-MM distances have already been calculated and stored loop_count = 0 ! do i = 1, nquant_nlink do i = qmmm_mpi%nquant_nlink_start, qmmm_mpi%nquant_nlink_end mmpottmp = zero qmewald%coulpot(i)=zero do j = 1,npairs loop_count = loop_count+1 call erfcfun(rij_data(QMMMRIJ,loop_count)*kappa,erfcx) mmpottmp = mmpottmp - qm_xcrd(4,j)*(one-erfcx)*rij_data(QMMMONERIJ,loop_count) !qm_xcrd(4,j) = charge in electron units qmewald%coulpot(i)=qmewald%coulpot(i)+rij_data(QMMMONERIJ,loop_count)*qm_xcrd(4,j) end do !j=1,npairs qmewald%mmpot(i) = qmewald%mmpot(i)+mmpottmp + total_mm_charge end do !i=1, nquant else !We have to calculate the distance between QM-MM pairs on the fly ! do i = 1, nquant_nlink do i = qmmm_mpi%nquant_nlink_start, qmmm_mpi%nquant_nlink_end mmpottmp = zero qmewald%coulpot(i)=zero qmi(1:3) = qm_coords(1:3,i) do j = 1, npairs vec(1:3) = qmi(1:3) - qm_xcrd(1:3,j) r2 = vec(1)*vec(1) + vec(2)*vec(2) + vec(3)*vec(3) oneRIJ = one/sqrt(r2) RIJ = r2*oneRIJ !one/oneRIJ call erfcfun(rij*kappa,erfcx) mmpottmp = mmpottmp - qm_xcrd(4,j)*(one-erfcx)*oneRIJ qmewald%coulpot(i)=qmewald%coulpot(i)+oneRIJ*qm_xcrd(4,j) end do !j=1,npairs qmewald%mmpot(i) = qmewald%mmpot(i)+mmpottmp + total_mm_charge end do !i = 1, nquant end if qmmm_struct%coulombic_eng=qmmm_struct%coulombic_eng*AU_to_EV !====================================== ! End Calculate Real Space Potential !====================================== return end subroutine qm_ewald_mm_pot subroutine qm_ewald_qm_pot(nquant,nlink,scf_mchg,qm_coords,kvec) !Author: Ross Walker (TSRI, 2005) !Calculates QM potential in qmpot !Requires the Mulliken Charges (or equivalent). use qmmm_module, only : qmmm_struct, qm2_params, qmewald, qm2_rij_eqns, qmmm_mpi use constants, only : PI, INVSQRTPI, zero, one, two use nblist, only : volume implicit none !Passed in integer, intent(in) :: nquant, nlink _REAL_, intent(in) :: scf_mchg(nquant+nlink) !Charges on the quantum atoms due to the current !density matrix _REAL_, intent(in) :: qm_coords(3,*) _REAL_, intent(in) :: kvec(qmmm_mpi%totkq_count) !Local integer :: i, j integer :: loop_count integer :: iminus, iplus _REAL_ :: esfact, wfact, qmi(1:3), vec(1:3), kvectmp _REAL_ :: r2, oneRIJ, RIJ, erfcx, chg_qm _REAL_ :: ktgs(8), x_cos, y_cos, z_cos, x_sin, y_sin, z_sin, ksum #include "qm2_array_locations.h" !For ew_coeff !#include "ew_pme_recip.h" -replaced by qmewald%kappa: TL !We only need to do most of this work if we are changing the mulliken charges on the QM image atoms !at every step (qm_ewald=1). If qm_ewald=2 then the charges on the QM image atoms are fixed at the SCF !charges from the previous MD step and were included in mmpot. But if we are not updating the image charges !we still need to if this is our first MD step. !=================================== ! Calculate K Space Potential !=================================== !Calculate the K space potential between only QM atoms loop_count = 0 qmewald%qmpot(1:qmmm_struct%nquant_nlink) = zero !Zero's entire array ! do i = 1, totkq do i = qmmm_mpi%kvec_start, qmmm_mpi%kvec_end loop_count = loop_count+1 ktgs(1:8) = zero kvectmp = two*kvec(loop_count) do j = 1, qmmm_struct%nquant_nlink x_cos =qmewald%qmktable(1,j,loop_count) x_sin =qmewald%qmktable(2,j,loop_count) y_cos =qmewald%qmktable(3,j,loop_count) y_sin =qmewald%qmktable(4,j,loop_count) z_cos =qmewald%qmktable(5,j,loop_count) z_sin =qmewald%qmktable(6,j,loop_count) chg_qm = scf_mchg(j) ktgs(1) = ktgs(1) + chg_qm*x_cos*y_cos*z_cos ktgs(2) = ktgs(2) + chg_qm*x_sin*y_sin*z_sin ktgs(3) = ktgs(3) + chg_qm*x_cos*y_cos*z_sin ktgs(4) = ktgs(4) + chg_qm*x_cos*y_sin*z_cos ktgs(5) = ktgs(5) + chg_qm*x_cos*y_sin*z_sin ktgs(6) = ktgs(6) + chg_qm*x_sin*y_sin*z_cos ktgs(7) = ktgs(7) + chg_qm*x_sin*y_cos*z_sin ktgs(8) = ktgs(8) + chg_qm*x_sin*y_cos*z_cos end do do j = 1, qmmm_struct%nquant_nlink x_cos =qmewald%qmktable(1,j,loop_count) x_sin =qmewald%qmktable(2,j,loop_count) y_cos =qmewald%qmktable(3,j,loop_count) y_sin =qmewald%qmktable(4,j,loop_count) z_cos =qmewald%qmktable(5,j,loop_count) z_sin =qmewald%qmktable(6,j,loop_count) ksum = zero ksum = ksum + x_cos*y_cos*z_cos*ktgs(1) ksum = ksum + x_sin*y_sin*z_sin*ktgs(2) ksum = ksum + x_cos*y_cos*z_sin*ktgs(3) ksum = ksum + x_cos*y_sin*z_cos*ktgs(4) ksum = ksum + x_cos*y_sin*z_sin*ktgs(5) ksum = ksum + x_sin*y_sin*z_cos*ktgs(6) ksum = ksum + x_sin*y_cos*z_sin*ktgs(7) ksum = ksum + x_sin*y_cos*z_cos*ktgs(8) qmewald%qmpot(j) = qmewald%qmpot(j) + ksum*kvectmp end do end do !=================================== ! End Calculate K Space Potential !=================================== !====================================== ! Calculate Real Space Potential !====================================== !We have to calculate QM-QM distances on the fly for qmewald ! do i = 1, nquant !Note: Ross Walker - Should really split this loop at some point ! but be careful to do balanced in parallel esfact = -two*qmewald%kappa*INVSQRTPI wfact = -PI/(qmewald%kappa*qmewald%kappa)/volume ! do i =1,nquant_nlink do i = qmmm_mpi%nquant_nlink_start, qmmm_mpi%nquant_nlink_end chg_qm = scf_mchg(i) qmi(1:3) = qm_coords(1:3,i) iminus = i-1 do j = 1,iminus vec(1:3) = qmi(1:3) - qm_coords(1:3,j) r2 = vec(1)*vec(1)+vec(2)*vec(2)+vec(3)*vec(3) onerij = one / sqrt(r2) rij = r2*oneRIJ !one/oneRIJ call erfcfun(rij*qmewald%kappa, erfcx) qmewald%qmpot(j) = qmewald%qmpot(j) - chg_qm*(one - erfcx)*onerij + wfact*chg_qm end do !i=j qmewald%qmpot(i) = qmewald%qmpot(i) + esfact*chg_qm + wfact*chg_qm iplus = i+1 do j = iplus, qmmm_struct%nquant_nlink vec(1:3) = qmi(1:3) - qm_coords(1:3,j) r2 = vec(1)*vec(1)+vec(2)*vec(2)+vec(3)*vec(3) onerij = one / sqrt(r2) rij = r2*oneRIJ !one/oneRIJ call erfcfun(rij*qmewald%kappa, erfcx) qmewald%qmpot(j) = qmewald%qmpot(j) - chg_qm*(one - erfcx)*onerij + wfact*chg_qm end do end do !====================================== ! End Calculate Real Space Potential !====================================== return end subroutine qm_ewald_qm_pot subroutine qm_ewald_add_fock(fock_matrix, qmpot, mmpot) !Author: Ross Walker, TSRI 2005 !Adds ewald potential info (mmpot and qmpot) to the diagonal elements of the fock matrix use qmmm_module, only : qmmm_struct, qmewald, qm2_params use constants, only : AU_TO_EV, BOHRS_TO_A implicit none !Passed in _REAL_, intent(in) :: mmpot(*) !Potential at each QM atom due to MM images _REAL_, intent(in) :: qmpot(*) !Self energy of the QM atoms to avoid overcounting _REAL_, intent(inout) :: fock_matrix(*) !Fock matrix !Local _REAL_ :: temp_pot integer :: i, ia, ib, i1, i2 !Now add the MMPOT and QMPOT array contributions to the diagonal elements of the fock matrix do i = 1, qmmm_struct%nquant_nlink IA = qm2_params%orb_loc(1,I) IB = qm2_params%orb_loc(2,I) temp_pot = (mmpot(i)+qmpot(i))*AU_TO_EV*BOHRS_TO_A do I1 = IA,IB i2 = qm2_params%pascal_tri2(i1) fock_matrix(i2) = fock_matrix(i2) - temp_pot !AU_TO_EV*BOHRS_TO_A converts (electrons/angstrom) to (eV/Bohr) end do end do return end subroutine qm_ewald_add_fock subroutine qm_ewald_correct_ee(ee, mmpot, p) !This routine should be called after a call to qm2_helect. Up to this point !the energy for the Ewald sum only included half of the term from the MM atoms !and half from the QM atoms. The QM atoms should contribute only half but the !MM atoms should contribute full. This routine corrects EE for this. use constants, only : AU_TO_EV, BOHRS_TO_A, zero, half use qmmm_module, only : qmmm_struct, qm2_params, qmewald implicit none !Passed in _REAL_, intent(inout) :: ee _REAL_, intent(in) :: mmpot(*) _REAL_, intent(in) :: p(*) !Local _REAL_ :: etemp integer :: i, i1, ia, ib, i2 etemp = zero do i = 1, qmmm_struct%nquant_nlink IA = qm2_params%orb_loc(1,I) IB = qm2_params%orb_loc(2,I) do I1 = IA,IB i2 = qm2_params%pascal_tri2(i1) etemp = etemp - mmpot(i)*p(i2)*AU_TO_EV*BOHRS_TO_A end do end do ee = ee + half*etemp return end subroutine qm_ewald_correct_ee subroutine qm_ewald_core(ewald_core,core_chg,mmpot,qmpot, scf_mchg, coulpot) !Computes the interaction of the Ewald potenital with CORE in QM atoms. !Ewald_core = electron volts !ewald_core = Sum(Core(i)*V(i)) use constants, only : zero, half, AU_TO_EV, BOHRS_TO_A, PI use qmmm_module, only : qmmm_struct, qmewald, qm2_struct use nblist, only : volume implicit none !In parallel all threads do a full 1 to nquant loop but have a part !of qmpot and mmpot so return a part of ewald_core that is then !reduced later. !Passed in _REAL_, intent(out) :: ewald_core _REAL_, intent(in) :: core_chg(*), mmpot(*), qmpot(*) _REAL_, intent(in) :: scf_mchg(*), coulpot(*) !Local _REAL_ :: ewdpot, coul_temp integer :: i ewald_core = zero qmmm_struct%coulombic_eng=zero do i = 1, qmmm_struct%nquant_nlink ewdpot = (mmpot(i)+half*qmpot(i)) !AU_TO_EV*BOHRS_TO_A converts (electrons/angstrom) to (eV/Bohr) ewald_core = ewald_core + ewdpot*core_chg(i) qmmm_struct%coulombic_eng=qmmm_struct%coulombic_eng+scf_mchg(i)* coulpot(i) end do qmmm_struct%coulombic_eng=qmmm_struct%coulombic_eng*AU_TO_EV* BOHRS_TO_A ewald_core = ewald_core*AU_TO_EV * BOHRS_TO_A return end subroutine qm_ewald_core subroutine qm_ewald_get_forces(qm_xcrd, qm_coords, natom, & scf_mchg, qmmmrijincore, & dxyzqm, dxyzcl, dvectors,mmcharge) !Calculates the gradient at the QM atom for the Ewald summation by all atoms. !Needs real scratch space of size ar least nquant. !The gradient from the reciprocal sum is split from the real space contribution !since the virial needs to be taken care of for reciprocal contribution. use constants, only : zero, half, one, two, INVSQRTPI, AU_TO_KCAL, BOHRS_TO_A, TWOPI use nblist, only : recip use qmmm_module, only : qmmm_struct, qmmm_mpi, qm2_rij_eqns, qmewald, qm2_params, qmmm_nml implicit none #include "qm2_array_locations.h" !Passed in integer, intent(in) :: natom _REAL_, intent(in) :: qm_coords(3,*) !Coordinates of the QM atoms _REAL_, intent(in) :: qm_xcrd(4,qmmm_struct%qm_mm_pairs) !Wrapped qm coordinates, in same order as the pair list, laid out as ! x,y,z,charge,x,y,z,charge... _REAL_, intent(in) :: scf_mchg(qmmm_struct%nquant_nlink) _REAL_ , intent(inout) :: dxyzqm(3,qmmm_struct%nquant_nlink) _REAL_ , intent(inout) :: dxyzcl(*) !Warning only gets force for MM atoms in the QM list! _REAL_, intent(in) :: dvectors(3,qmmm_mpi%totkq_count) _REAL_, intent(in) :: mmcharge(natom) !Sander's MM charge array but in electron units. logical, intent(in) :: qmmmrijincore !Local _REAL_ :: qmmulik_chg, df_qmmma, oneRIJ2, rij_coeff, r2, onerij, rij _REAL_ :: qmi(3), df_qmmm(3), erfcx, d_erfcx, fqm(3) _REAL_ :: vec(3) _REAL_ :: ccfk(3) _REAL_ :: ktgs(8), x_cos, y_cos, z_cos, x_sin, y_sin, z_sin _REAL_ :: x_cosj, y_cosj, z_cosj, x_sinj, y_sinj, z_sinj _REAL_ :: ktg1, ktg2, ktg3, df_sum(3) _REAL_ :: fda(8), fd(3), mmchg, kappa integer :: i, j, ii, loop_count, inner_loop_count integer :: jstart, jend !For ew_coeff #include "ew_pme_recip.h" !====================================== ! Calculate Real Space Gradient !====================================== !Step 1 do QM atoms with MM atoms in the cutoff list !This is to correct for the overcounting in the reciprocal calculation. if (qmmm_nml%qm_pme) then kappa=ew_coeff ! The Ewald coefficient from MM part should be used if MM PME contribution is used. else kappa=qmewald%kappa ! Otherwise the Ewald coefficient from QM part should be used. end if if (qmmmrijincore) then !Our QM-MM distances have already been calculated and stored loop_count = 0 ! do i = 1, nquant_nlink do i = qmmm_mpi%nquant_nlink_start, qmmm_mpi%nquant_nlink_end inner_loop_count = 1 qmmulik_chg=scf_mchg(i)*AU_TO_KCAL*BOHRS_TO_A qmi(1:3) = qm_coords(1:3,i) df_sum(1:3) = zero do j = 1,qmmm_struct%qm_mm_pairs loop_count = loop_count+1 rij_coeff = qm2_rij_eqns%qmmmrijdata(QMMMRIJ,loop_count)*kappa call erfcfun(rij_coeff,erfcx) !(2/3)exp(rij_coeff^3)*INVSQRTPI d_erfcx = two*kappa*exp(-rij_coeff*rij_coeff)*INVSQRTPI oneRIJ = qm2_rij_eqns%qmmmrijdata(QMMMONERIJ,loop_count) oneRIJ2 = oneRIJ*oneRIJ vec(1:3) = qmi(1:3) - qm_xcrd(1:3,j) df_qmmma = qm_xcrd(4,j) * (-d_erfcx+(one-erfcx)*oneRIJ)*oneRIJ2 df_qmmm(1:3) = vec(1:3)*df_qmmma*qmmulik_chg df_sum(1:3) = df_sum(1:3) + df_qmmm(1:3) dxyzcl(inner_loop_count) = dxyzcl(inner_loop_count) - df_qmmm(1) dxyzcl(inner_loop_count+1) = dxyzcl(inner_loop_count+1) - df_qmmm(2) dxyzcl(inner_loop_count+2) = dxyzcl(inner_loop_count+2) - df_qmmm(3) inner_loop_count = inner_loop_count + 3 end do !j=1,qmmm_struct%qm_mm_pairs dxyzqm(1:3,i) = dxyzqm(1:3,i) + df_sum(1:3) end do !i=1, nquant else !We have to calculate the distance between QM-MM pairs on the fly ! do i = 1, nquant_nlink do i = qmmm_mpi%nquant_nlink_start, qmmm_mpi%nquant_nlink_end inner_loop_count = 1 qmmulik_chg=scf_mchg(i)*AU_TO_KCAL*BOHRS_TO_A qmi(1:3) = qm_coords(1:3,i) df_sum(1:3) = zero do j = 1, qmmm_struct%qm_mm_pairs vec(1:3) = qmi(1:3) - qm_xcrd(1:3,j) r2 = vec(1)*vec(1) + vec(2)*vec(2) + vec(3)*vec(3) oneRIJ = one/sqrt(r2) oneRIJ2 = oneRIJ*oneRIJ RIJ = r2*oneRIJ !one/oneRIJ rij_coeff = rij*kappa call erfcfun(rij_coeff,erfcx) d_erfcx = two*kappa*exp(-rij_coeff*rij_coeff)*INVSQRTPI df_qmmma = qmmulik_chg * qm_xcrd(4,j) * (-d_erfcx+(one-erfcx)*oneRIJ)*oneRIJ2 df_qmmm(1:3) = vec(1:3)*df_qmmma df_sum(1:3) = df_sum(1:3) + df_qmmm(1:3) dxyzcl(inner_loop_count) = dxyzcl(inner_loop_count) - df_qmmm(1) dxyzcl(inner_loop_count+1) = dxyzcl(inner_loop_count+1) - df_qmmm(2) dxyzcl(inner_loop_count+2) = dxyzcl(inner_loop_count+2) - df_qmmm(3) inner_loop_count = inner_loop_count + 3 end do !j=1,qmmm_struct%qm_mm_pairs dxyzqm(1:3,i) = dxyzqm(1:3,i) + df_sum(1:3) end do !i = 1, nquant end if !Step 2 - do all Real space QM atoms with QM atoms !We have to do this on the fly because of link atoms which we don't !include here but were included in original RIJ calculation. ! now kappa is the Ewald coefficient from QM part kappa=qmewald%kappa #ifdef MPI do i = qmmm_mpi%nquant_nlink_istart, qmmm_mpi%nquant_nlink_iend jstart = qmmm_mpi%nquant_nlink_jrange(1,i) jend = qmmm_mpi%nquant_nlink_jrange(2,i) #else do I=2,qmmm_struct%nquant_nlink jstart = 1 jend = i-1 #endif qmi(1:3) = qm_coords(1:3,i) df_sum(1:3) = zero qmmulik_chg = scf_mchg(i)*AU_TO_KCAL*BOHRS_TO_A do j = jstart, jend vec(1:3) = qmi(1:3) - qm_coords(1:3,j) r2 = vec(1)*vec(1)+vec(2)*vec(2)+vec(3)*vec(3) onerij = one / sqrt(r2) oneRIJ2 = oneRIJ*oneRIJ rij = r2*oneRIJ !one/oneRIJ rij_coeff = rij * kappa call erfcfun(rij_coeff, erfcx) d_erfcx = two*kappa*exp(-rij_coeff*rij_coeff)*INVSQRTPI !Reuse qmmm scalars for convenience df_qmmma = qmmulik_chg*scf_mchg(j)*(-d_erfcx+(one-erfcx)*oneRIJ)*oneRIJ2 df_qmmm(1:3) = vec(1:3)*df_qmmma df_sum(1:3) = df_sum(1:3) + df_qmmm(1:3) dxyzqm(1:3,j) = dxyzqm(1:3,j) - df_qmmm(1:3) end do dxyzqm(1:3,i) = dxyzqm(1:3,i) + df_sum(1:3) end do !====================================== ! End Calculate Real Space Gradient !====================================== !If qm_pme we only want to do the QM-QM k space gradients here. !====================================== ! Calculate K Space Gradient !====================================== if (.not. qmmm_nml%qm_pme) then qmewald%d_ewald_mm = zero !Natom array of force on mm atoms due to QM ewald field loop_count = 0 ! do ii = 1, totkq do ii = qmmm_mpi%kvec_start, qmmm_mpi%kvec_end loop_count = loop_count+1 ccfk(1:3) = dvectors(1:3,loop_count) !1) QM-MM Interaction ktgs(1:8) = zero do j = 1, natom !Do this over all MM atoms (skip QM) ! if (.not. qm_atom_mask(j)) then - often quicker to just loop through all atoms, mmchg will be zero for qm atoms. !it is an MM atom x_cos =qmewald%ktable(1,j,loop_count) x_sin =qmewald%ktable(2,j,loop_count) y_cos =qmewald%ktable(3,j,loop_count) y_sin =qmewald%ktable(4,j,loop_count) z_cos =qmewald%ktable(5,j,loop_count) z_sin =qmewald%ktable(6,j,loop_count) mmchg = mmcharge(j) ktgs(1) = ktgs(1) + mmchg * x_cos*y_cos*z_cos ktgs(2) = ktgs(2) + mmchg * x_sin*y_cos*z_cos ktgs(3) = ktgs(3) + mmchg * x_cos*y_sin*z_cos ktgs(4) = ktgs(4) + mmchg * x_sin*y_sin*z_cos ktgs(5) = ktgs(5) + mmchg * x_cos*y_cos*z_sin ktgs(6) = ktgs(6) + mmchg * x_sin*y_cos*z_sin ktgs(7) = ktgs(7) + mmchg * x_cos*y_sin*z_sin ktgs(8) = ktgs(8) + mmchg * x_sin*y_sin*z_sin ! end if end do do j = 1, qmmm_struct%nquant_nlink x_cos =qmewald%qmktable(1,j,loop_count) x_sin =qmewald%qmktable(2,j,loop_count) y_cos =qmewald%qmktable(3,j,loop_count) y_sin =qmewald%qmktable(4,j,loop_count) z_cos =qmewald%qmktable(5,j,loop_count) z_sin =qmewald%qmktable(6,j,loop_count) !Temporary arrays fda(1) = x_sin*y_cos*z_cos fda(2) = x_cos*y_cos*z_cos fda(3) = x_sin*y_sin*z_cos fda(4) = x_cos*y_sin*z_cos fda(5) = x_sin*y_cos*z_sin fda(6) = x_cos*y_cos*z_sin fda(7) = x_sin*y_sin*z_sin fda(8) = x_cos*y_sin*z_sin !Force on x-axis fd(1) = -ktgs(1)*fda(1)+ktgs(2)*fda(2) & -ktgs(3)*fda(3)+ktgs(4)*fda(4) & -ktgs(5)*fda(5)+ktgs(6)*fda(6) & -ktgs(7)*fda(7)+ktgs(8)*fda(8) !Force on y-axis fd(2) = -ktgs(1)*fda(4)-ktgs(2)*fda(3) & +ktgs(3)*fda(2)+ktgs(4)*fda(1) & -ktgs(5)*fda(8)-ktgs(6)*fda(7) & +ktgs(7)*fda(6)+ktgs(8)*fda(5) !Force on z-axis fd(3) = -ktgs(1)*fda(6)-ktgs(2)*fda(5) & -ktgs(3)*fda(8)-ktgs(4)*fda(7) & +ktgs(5)*fda(2)+ktgs(6)*fda(1) & +ktgs(7)*fda(4)+ktgs(8)*fda(3) qmmulik_chg=scf_mchg(j)*AU_TO_KCAL*BOHRS_TO_A dxyzqm(1:3,j) = dxyzqm(1:3,j) + ccfk(1:3)*fd(1:3)*qmmulik_chg end do !2) MM-QM interaction fda(1:8) = zero do j = 1, qmmm_struct%nquant_nlink x_cos =qmewald%qmktable(1,j,loop_count) x_sin =qmewald%qmktable(2,j,loop_count) y_cos =qmewald%qmktable(3,j,loop_count) y_sin =qmewald%qmktable(4,j,loop_count) z_cos =qmewald%qmktable(5,j,loop_count) z_sin =qmewald%qmktable(6,j,loop_count) qmmulik_chg=scf_mchg(j)*AU_TO_KCAL*BOHRS_TO_A fda(1) = fda(1) + qmmulik_chg*x_sin*y_cos*z_cos fda(2) = fda(2) + qmmulik_chg*x_cos*y_cos*z_cos fda(3) = fda(3) + qmmulik_chg*x_sin*y_sin*z_cos fda(4) = fda(4) + qmmulik_chg*x_cos*y_sin*z_cos fda(5) = fda(5) + qmmulik_chg*x_sin*y_cos*z_sin fda(6) = fda(6) + qmmulik_chg*x_cos*y_cos*z_sin fda(7) = fda(7) + qmmulik_chg*x_sin*y_sin*z_sin fda(8) = fda(8) + qmmulik_chg*x_cos*y_sin*z_sin end do do j = 1, natom x_cos =qmewald%ktable(1,j,loop_count) x_sin =qmewald%ktable(2,j,loop_count) y_cos =qmewald%ktable(3,j,loop_count) y_sin =qmewald%ktable(4,j,loop_count) z_cos =qmewald%ktable(5,j,loop_count) z_sin =qmewald%ktable(6,j,loop_count) ktgs(1) = x_cos*y_cos*z_cos ktgs(2) = x_sin*y_cos*z_cos ktgs(3) = x_cos*y_sin*z_cos ktgs(4) = x_sin*y_sin*z_cos ktgs(5) = x_cos*y_cos*z_sin ktgs(6) = x_sin*y_cos*z_sin ktgs(7) = x_cos*y_sin*z_sin ktgs(8) = x_sin*y_sin*z_sin !Force on x-axis fd(1) = -ktgs(1)*fda(1)+ktgs(2)*fda(2) & -ktgs(3)*fda(3)+ktgs(4)*fda(4) & -ktgs(5)*fda(5)+ktgs(6)*fda(6) & -ktgs(7)*fda(7)+ktgs(8)*fda(8) !Force on y-axis fd(2) = -ktgs(1)*fda(4)-ktgs(2)*fda(3) & +ktgs(3)*fda(2)+ktgs(4)*fda(1) & -ktgs(5)*fda(8)-ktgs(6)*fda(7) & +ktgs(7)*fda(6)+ktgs(8)*fda(5) !Force on z-axis fd(3) = -ktgs(1)*fda(6)-ktgs(2)*fda(5) & -ktgs(3)*fda(8)-ktgs(4)*fda(7) & +ktgs(5)*fda(2)+ktgs(6)*fda(1) & +ktgs(7)*fda(4)+ktgs(8)*fda(3) !qm muliken charge has been multiplied already mmchg = mmcharge(j) qmewald%d_ewald_mm(1:3,j) = qmewald%d_ewald_mm(1:3,j) - ccfk(1:3)*fd(1:3)*mmchg end do end do end if !(if .not. qmmm_nml%qm_pme) !3) QM-QM interaction - Do this for both QM_PME and QM_EWALD loop_count = 0 do ii = qmmm_mpi%kvec_start,qmmm_mpi%kvec_end loop_count=loop_count+1 ccfk(1:3) = dvectors(1:3,loop_count) do i = 1, qmmm_struct%nquant_nlink x_cos =qmewald%qmktable(1,i,loop_count) x_sin =qmewald%qmktable(2,i,loop_count) y_cos =qmewald%qmktable(3,i,loop_count) y_sin =qmewald%qmktable(4,i,loop_count) z_cos =qmewald%qmktable(5,i,loop_count) z_sin =qmewald%qmktable(6,i,loop_count) fqm(1:3) = zero qmmulik_chg=scf_mchg(i)*AU_TO_KCAL*BOHRS_TO_A do j = 1,qmmm_struct%nquant_nlink x_cosj =qmewald%qmktable(1,j,loop_count) x_sinj =qmewald%qmktable(2,j,loop_count) y_cosj =qmewald%qmktable(3,j,loop_count) y_sinj =qmewald%qmktable(4,j,loop_count) z_cosj =qmewald%qmktable(5,j,loop_count) z_sinj =qmewald%qmktable(6,j,loop_count) ktg1 = x_cosj*x_cos + x_sinj*x_sin ktg2 = y_cosj*y_cos + y_sinj*y_sin ktg3 = z_cosj*z_cos + z_sinj*z_sin fd(1) = -x_cosj*x_sin + x_sinj*x_cos fd(2) = -y_cosj*y_sin + y_sinj*y_cos fd(3) = -z_cosj*z_sin + z_sinj*z_cos !Force on x,y,z-axis - temporary use of FDA array and mmchg array mmchg=scf_mchg(j)*qmmulik_chg !scf mulliken charge on qm atom j * atom i (adjusted to kcals) fda(1) = mmchg*ccfk(1)*fd(1)*ktg2*ktg3 fda(2) = mmchg*ccfk(2)*ktg1*fd(2)*ktg3 fda(3) = mmchg*ccfk(3)*ktg1*ktg2*fd(3) if (i == j) then fqm(1:3) = fqm(1:3) + fda(1:3) else fqm(1:3) = fqm(1:3) + half*fda(1:3) dxyzqm(1:3,j) = dxyzqm(1:3,j) - half*fda(1:3) end if end do dxyzqm(1:3,i) = dxyzqm(1:3,i) + fqm(1:3) end do end do !====================================== ! End Calculate K Space Gradient !====================================== return end subroutine qm_ewald_get_forces