""" List of useful widgets we use here. """ from __future__ import division from csv import writer import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2TkAgg) from mdoutanalyzer.constants import LABEL_DESC from mdoutanalyzer.windows import TextWindow import numpy as np from tkFileDialog import asksaveasfilename from tkMessageBox import showerror, showwarning, showinfo from Tkinter import * try: from scipy.stats import gaussian_kde except ImportError: gaussian_kde = None def make_figure_window(fcn): """ Decorator to set up a new window to draw the plot in and set up the plot appearance """ def new_fcn(self): # Generate the new window new_window = Toplevel(self) fig = plt.figure(self.master.master.next_fig()) newfig = FigureCanvasTkAgg(fig, master=new_window) ax = [] # Determine our default x- and y-labels if self.graph_props.xlabel(): xlab = self.graph_props.xlabel() else: xlab = self.default_xlabel() if self.graph_props.ylabel(): ylab = self.graph_props.ylabel() else: ylab = self.default_ylabel() # Add all of the new subplots that we want if not self.graph_props.separate(): nax = 1 else: nax = 0 for val in self.activelist: if val.get(): nax += 1 ncols = min(nax, 3) nrows = nax // 3 if nax % 3 != 0: nrows += 1 for i in range(nax): newax = fig.add_subplot(nrows, ncols, i+1) newax.set_xlabel(xlab) newax.set_ylabel(ylab) if self.graph_props.title(): title = self.graph_props.title(i) else: title = self.default_title(i+1) newax.set_title(title) newax.grid(self.graph_props.gridlines()) ax.append(newax) # Call our decorated function and bail out if it failed if fcn(self, newfig, ax, self.graph_props.nexcl()) == 1: # This means we errored new_window.destroy() return # Decorate our new window and register it so it keeps a reference self.new_windows.append(new_window) newfig.get_tk_widget().pack(side=TOP, fill=BOTH, expand=1) # Add the toolbar toolbar = NavigationToolbar2TkAgg(newfig, new_window) toolbar.update() newfig._tkcanvas.pack(side=TOP, fill=BOTH, expand=1) return new_fcn def check_valid_input(fcn): """ Decorator set up to check that we have valid input """ def new_fcn(self): if sum([v.get() for v in self.activelist]) == 0: showerror('No Data Sets!', 'No data sets chosen!', parent=self) return 1 nexcl = self.graph_props.nexcl() if nexcl < 0 or nexcl > len(self.datasets[self.keylist[0]]): showerror('Bad Exclusions!', 'Number of excluded points must be greater than ' 'zero and less than the number of data points!', parent=self) return 1 return fcn(self) return new_fcn class InputEntryWindow(Toplevel): """ Widget that takes a single text input """ def __init__(self, master, var, label, nchar=50): Toplevel.__init__(self, master) self.entry = Entry(self, textvariable=var, width=nchar) self.label = Label(self, text=label) self.button = Button(self, text='OK', command=self.destroy) self.entry.pack() self.label.pack() self.button.pack(fill=X) self.resizable(False, False) self.grab_set() class LabeledEntry(Frame): """ This is a labeled entry widget """ def __init__(self, master, text, *args, **kwargs): Frame.__init__(self, master) self.entry = Entry(self, *args, **kwargs) self.label = Label(self, text=text) self.entry.pack(fill=BOTH) self.label.pack(fill=BOTH) class DataButton(Checkbutton): """ Button for each data set parsed from the mdout file """ def __init__(self, master, var, label): Checkbutton.__init__(self, master, indicatoron=False, text=label, variable=var, width=20, height=2) self.bind('', lambda event: showinfo('Energy term', LABEL_DESC[label], master=self)) class _AnaButton(Button): """ General base class for analysis buttons """ def __init__(self, master, datasets, activelist, graph_props, text): Button.__init__(self, master, text=text, width=20, height=2, command=self.execute) self.datasets = datasets self.graph_props = graph_props self.activelist = activelist self.keylist = self.datasets.keys() self.new_windows = [] def destroy(self): """ Destroy all windows we've spawned, then destroy myself """ for window in self.new_windows: window.destroy() Button.destroy(self) def default_xlabel(self): """ Get the default label for the X-axis """ if self.graph_props.use_time(): return 'Time (ps)' else: return 'Frame #' def default_ylabel(self): return "" def default_title(self, num): """ Generate the default title from the data """ nax = 0 for v in self.activelist: if v.get(): nax += 1 if not self.graph_props.separate() and nax > 1: return "" nfound = 0 for i, key in enumerate(self.keylist): if self.activelist[i].get(): nfound += 1 if nfound == num: return LABEL_DESC[key] class GraphButton(_AnaButton): """ This is the button to graph all of the selected data sets """ def default_title(self, num): fpart = _AnaButton.default_title(self, num).strip() if fpart: if self.graph_props.use_time() and 'TIME(PS)' in self.keylist: return fpart + ' vs. Time' else: return fpart + ' vs. Frame' else: return 'Raw Data' @check_valid_input @make_figure_window def execute(self, fig, ax, nexcl): """ Graphs the data sets """ # Try to get our x data from the Time try: xdata = self.datasets['TIME(PS)'].copy()[nexcl:: self.graph_props.stride()] except KeyError: xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) if not self.graph_props.use_time(): xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) nplt = 0 for i, a in enumerate(self.activelist): if not a.get(): continue # plot me props = self.graph_props.graph_options() if self.graph_props.legend() and not self.graph_props.separate(): label = self.keylist[i] else: label = '_nolegend_' # Catch instance where an energy is not printed on the first frame # (e.g., for EAMBER when restraints are on) ax[nplt].plot(xdata, self.datasets[self.keylist[i]].copy()[ nexcl::self.graph_props.stride()], label=label, **props) # Show the legend or not if self.graph_props.legend() and not self.graph_props.separate(): ax[nplt].legend(loc=0) if self.graph_props.separate(): nplt += 1 self.graph_props.reset_props() fig.show() class SaveButton(_AnaButton): """ For saving the data to a file """ @check_valid_input def execute(self): """ Saves the data sets to a text or CSV file """ fname = asksaveasfilename(parent=self, defaultextension='.dat', filetypes=[('Data File', '*.dat'), ('CSV File', '*.csv'), ('All Files', '*')]) nexcl = self.graph_props.nexcl() xdata = np.arange(1, len(self.datasets[self.keylist[0]])+1) actives, keys = [xdata], ['Frame'] for i, val in enumerate(self.activelist): if not val.get(): continue keys.append(self.keylist[i]) actives.append(self.datasets[self.keylist[i]]) f = open(fname, 'w') # Detect csv or not if fname.endswith('.csv'): csvwriter = writer(f) # Header csvwriter.writerow(keys) for i in range(nexcl, len(self.datasets[keys[1]]), self.graph_props.stride()): csvwriter.writerow([v[i] for v in actives]) else: f.write('#' + ''.join(['%16s' % n for n in keys]) + '\n') for i in range(nexcl, len(self.datasets[keys[1]]), self.graph_props.stride()): f.write(' ' + ''.join(['%16.4f' % v[i] for v in actives]) + '\n') f.close() class StatButton(_AnaButton): """ Prints average and standard deviation of each data set """ NVALS = 4 @check_valid_input def execute(self): nexcl = self.graph_props.nexcl() header = ('%-16s' + '%16s'*self.NVALS) % ('Data Set', 'Min', 'Max', 'Avg.', 'Std. Dev.') report_str = header + '\n' + '-'*len(header) + '\n' for i, val in enumerate(self.activelist): if not val.get(): continue dset = self.datasets[self.keylist[i]][nexcl::self.graph_props.stride()] report_str += ('%-16s' + '%16.4f'*self.NVALS + '\n') % (self.keylist[i], dset.min(), dset.max(), dset.mean(), dset.std()) window = TextWindow(self.master, width=len(header)+4, height=i+5) window.write(report_str) window.grab_set() class HistButton(_AnaButton): """ Histograms the data """ def default_title(self, num): fpart = _AnaButton.default_title(self, num).strip() if fpart: if self.graph_props.use_kde(): return fpart + ' Smoothed Normalized Histogram (KDE)' elif self.graph_props.normalize(): return fpart + ' Normalized Histogram' else: return fpart + ' Histogram' elif self.graph_props.use_kde(): return 'Smoothed Normalized Histogram (KDE)' elif self.graph_props.normalize(): return 'Normalized Histograms' else: return 'Histograms' def default_xlabel(self): return "" def default_ylabel(self): if self.graph_props.normalize() or self.graph_props.kde(): return 'Probability' else: return 'Frequency' @check_valid_input @make_figure_window def execute(self, fig, ax, nexcl): """ Graphs the histograms of the data sets """ if self.graph_props.use_kde() and gaussian_kde is None: showwarning('No scipy!', 'You must have scipy in order to use a ' 'kernel density estimate to smooth the histograms!', parent=self) self.graph_props.noscipy() nplt = 0 # Set the graph properties for i, a in enumerate(self.activelist): if not a.get(): continue dset = (self.datasets[self.keylist[i]].copy() [nexcl::self.graph_props.stride()]) props = self.graph_props.graph_options() if self.graph_props.legend() and not self.graph_props.separate(): label = self.keylist[i] else: label = '_nolegend_' # Plot either with a KDE or not if self.graph_props.use_kde(): # Use a kernel density estimate for the histogramming to provide a # smooth curve kde = gaussian_kde(dset) # Use 200 points to characterize the surface. Go 1/100th of the range # out past either side of the max and min kmin = dset.min() - (dset.max() - dset.min()) / 100 kmax = dset.max() + (dset.max() - dset.min()) / 100 xdata = np.arange(kmin, kmax+0.000000001, (kmax-kmin)/200) ydata = np.asarray([kde.evaluate(x) for x in xdata]) ax[nplt].plot(xdata, ydata, label=label, **props) else: # No KDE -- straight-out histogramming bw = self.graph_props.binwidth() if bw == 0: bw = 3.5 * dset.std() / len(dset) ** (1/3) if bw > 0: nbins = int((np.max(dset) - np.min(dset)) / bw) else: nbins = -int(bw) try: hist, bin_edges = np.histogram(dset, nbins, density=self.graph_props.normalize()) except TypeError: hist, bin_edges = np.histogram(dset, nbins, normed=self.graph_props.normalize()) ax[nplt].plot(bin_edges[:len(hist)], hist, label=label, **props) # Plot our function if self.graph_props.legend() and not self.graph_props.separate(): ax[nplt].legend(loc=0) if self.graph_props.separate(): nplt += 1 self.graph_props.reset_props() fig.show() class AutoCorrButton(_AnaButton): """ Does the normed autocorrelation function (with plotting) of the data set """ def default_title(self, num): fpart = _AnaButton.default_title(self, num).strip() if fpart: return fpart + ' Autocorrelation Function' else: return "Normalized Autocorrelation Function" def default_xlabel(self): if self.graph_props.use_time() and 'TIME(PS)' in self.keylist: return "Lag Time (ps)" return "Lag (Frame #)" def default_ylabel(self): return "Normalized Autocorrelation" @check_valid_input @make_figure_window def execute(self, fig, ax, nexcl): # Try to get our x data from the Time try: xdata = self.datasets['TIME(PS)'].copy()[nexcl:: self.graph_props.stride()] except KeyError: xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) if not self.graph_props.use_time(): xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) nplt = 0 for i, a in enumerate(self.activelist): if not a.get(): continue # plot me props = self.graph_props.graph_options() if self.graph_props.legend() and not self.graph_props.separate(): label = self.keylist[i] else: label = '_nolegend_' dset = (self.datasets[self.keylist[i]].copy() [nexcl::self.graph_props.stride()]) dset -= dset.sum() / len(dset) dset /= dset.std() dset2 = dset.copy() / len(dset) acor = np.correlate(dset, dset2, 'full') acor = acor[len(acor)//2:] xend = len(acor) ax[nplt].plot(xdata[:xend], acor, label=label, **props) if self.graph_props.legend() and not self.graph_props.separate(): ax[nplt].legend(loc=0) if self.graph_props.separate(): nplt += 1 self.graph_props.reset_props() fig.show() class RunningAvgButton(_AnaButton): """ Plots the running average of a variable """ def default_title(self, num): fpart = _AnaButton.default_title(self, num).strip() if fpart: return fpart + ' Running Average (window = %d)' % ( self.graph_props.window()) else: return "Running Average (window = %d)" % (self.graph_props.window()) @check_valid_input @make_figure_window def execute(self, fig, ax, nexcl): try: xdata = self.datasets['TIME(PS)'].copy()[nexcl:: self.graph_props.stride()] except KeyError: xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) if self.graph_props.use_time(): xdata = np.arange(nexcl+1, len(self.datasets[self.keylist[0]])+1, self.graph_props.stride()) nplt = 0 # Set the graph properties for i, a in enumerate(self.activelist): if not a.get(): continue # plot me props = self.graph_props.graph_options() if self.graph_props.legend() and not self.graph_props.separate(): label = self.keylist[i] else: label = '_nolegend_' dset = (self.datasets[self.keylist[i]].copy() [nexcl::self.graph_props.stride()]) ravg = dset.copy() self._calc_run_avg(ravg, dset) ax[nplt].plot(xdata, ravg, label=label, **props) if self.graph_props.legend() and not self.graph_props.separate(): ax[nplt].legend(loc=0) if self.graph_props.separate(): nplt += 1 self.graph_props.reset_props() fig.show() def _calc_run_avg(self, ravg, dset): """ Calculates the running average """ window = self.graph_props.window() for i in range(len(ravg)): ravg[i] = (np.sum(dset[max(0,i-window):min(len(ravg),i+window)]) / (min(len(ravg), i+window) - max(0, i-window))) class CumulativeAvgButton(RunningAvgButton): def default_title(self, num): fpart = _AnaButton.default_title(self, num).strip() if fpart: return fpart + ' Cumulative Running Average' else: return 'Cumulative Running Average' def _calc_run_avg(self, ravg, dset): """ Calculates the running average """ for i in range(len(ravg)): ravg[i] = np.sum(dset[:i+1]) / (i+1) if __name__ == '__main__': root = Tk() myvar = StringVar() ient = InputEntryWindow(root, myvar, 'Test!') root.mainloop() print 'myvar == ', myvar.get()