/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "ct.h" typedef struct { ct_solver super; const ct_desc *desc; int bufferedp; kdftw k; } S; typedef struct { plan_dftw super; kdftw k; INT r; stride rs; INT m, ms, v, vs, mb, me, extra_iter; stride brs; twid *td; const S *slv; } P; /************************************************************* Nonbuffered code *************************************************************/ static void apply(const plan *ego_, R *rio, R *iio) { const P *ego = (const P *) ego_; INT i; ASSERT_ALIGNED_DOUBLE; for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) { INT mb = ego->mb, ms = ego->ms; ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, ego->rs, mb, ego->me, ms); } } static void apply_extra_iter(const plan *ego_, R *rio, R *iio) { const P *ego = (const P *) ego_; INT i, v = ego->v, vs = ego->vs; INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms; ASSERT_ALIGNED_DOUBLE; for (i = 0; i < v; ++i, rio += vs, iio += vs) { ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, ego->rs, mb, mm, ms); ego->k(rio + mm*ms, iio + mm*ms, ego->td->W, ego->rs, mm, mm+2, 0); } } /************************************************************* Buffered code *************************************************************/ static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf) { INT brs = WS(ego->brs, 1); INT rs = WS(ego->rs, 1); INT ms = ego->ms; X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1, ego->r, rs, brs, me - mb, ms, 2); ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2); X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms, ego->r, brs, rs, me - mb, 2, ms); } /* must be even for SIMD alignment; should not be 2^k to avoid associativity conflicts */ static INT compute_batchsize(INT radix) { /* round up to multiple of 4 */ radix += 3; radix &= -4; return (radix + 2); } static void apply_buf(const plan *ego_, R *rio, R *iio) { const P *ego = (const P *) ego_; INT i, j, v = ego->v, r = ego->r; INT batchsz = compute_batchsize(r); R *buf; INT mb = ego->mb, me = ego->me; size_t bufsz = r * batchsz * 2 * sizeof(R); BUF_ALLOC(R *, buf, bufsz); for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) { for (j = mb; j + batchsz < me; j += batchsz) dobatch(ego, rio, iio, j, j + batchsz, buf); dobatch(ego, rio, iio, j, me, buf); } BUF_FREE(buf, bufsz); } /************************************************************* common code *************************************************************/ static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw, ego->r * ego->m, ego->r, ego->m + ego->extra_iter); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->brs); X(stride_destroy)(ego->rs); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *slv = ego->slv; const ct_desc *e = slv->desc; if (slv->bufferedp) p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")", compute_batchsize(ego->r), ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam); else p->print(p, "(dftw-direct-%D/%D%v \"%s\")", ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam); } static int applicable0(const S *ego, INT r, INT irs, INT ors, INT m, INT ms, INT v, INT ivs, INT ovs, INT mb, INT me, R *rio, R *iio, const planner *plnr, INT *extra_iter) { const ct_desc *e = ego->desc; UNUSED(v); return ( 1 && r == e->radix && irs == ors /* in-place along R */ && ivs == ovs /* in-place along V */ /* check for alignment/vector length restrictions */ && ((*extra_iter = 0, e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr)) || (*extra_iter = 1, (1 /* FIXME: require full array, otherwise some threads may be extra_iter and other threads won't be. Generating the proper twiddle factors is a pain in this case */ && mb == 0 && me == m && e->genus->okp(e, rio, iio, irs, ivs, m, mb, me - 1, ms, plnr) && e->genus->okp(e, rio, iio, irs, ivs, m, me - 1, me + 1, ms, plnr)))) && (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs, m, mb, me - *extra_iter, ms, plnr)) ); } static int applicable0_buf(const S *ego, INT r, INT irs, INT ors, INT m, INT ms, INT v, INT ivs, INT ovs, INT mb, INT me, R *rio, R *iio, const planner *plnr) { const ct_desc *e = ego->desc; INT batchsz; UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio); return ( 1 && r == e->radix && irs == ors /* in-place along R */ && ivs == ovs /* in-place along V */ /* check for alignment/vector length restrictions, both for batchsize and for the remainder */ && (batchsz = compute_batchsize(r), 1) && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0, m, mb, mb + batchsz, 2, plnr)) && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0, m, mb, me, 2, plnr)) ); } static int applicable(const S *ego, INT r, INT irs, INT ors, INT m, INT ms, INT v, INT ivs, INT ovs, INT mb, INT me, R *rio, R *iio, const planner *plnr, INT *extra_iter) { if (ego->bufferedp) { *extra_iter = 0; if (!applicable0_buf(ego, r, irs, ors, m, ms, v, ivs, ovs, mb, me, rio, iio, plnr)) return 0; } else { if (!applicable0(ego, r, irs, ors, m, ms, v, ivs, ovs, mb, me, rio, iio, plnr, extra_iter)) return 0; } if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16), v, m * r, r)) return 0; if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr)) return 0; return 1; } static plan *mkcldw(const ct_solver *ego_, INT r, INT irs, INT ors, INT m, INT ms, INT v, INT ivs, INT ovs, INT mstart, INT mcount, R *rio, R *iio, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const ct_desc *e = ego->desc; INT extra_iter; static const plan_adt padt = { 0, awake, print, destroy }; A(mstart >= 0 && mstart + mcount <= m); if (!applicable(ego, r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount, rio, iio, plnr, &extra_iter)) return (plan *)0; if (ego->bufferedp) { pln = MKPLAN_DFTW(P, &padt, apply_buf); } else { pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply); } pln->k = ego->k; pln->rs = X(mkstride)(r, irs); pln->td = 0; pln->r = r; pln->m = m; pln->ms = ms; pln->v = v; pln->vs = ivs; pln->mb = mstart; pln->me = mstart + mcount; pln->slv = ego; pln->brs = X(mkstride)(r, 2 * compute_batchsize(r)); pln->extra_iter = extra_iter; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops); if (ego->bufferedp) { /* 8 load/stores * N * V */ pln->super.super.ops.other += 8 * r * mcount * v; } pln->super.super.could_prune_now_p = (!ego->bufferedp && r >= 5 && r < 64 && m >= r); return &(pln->super.super); } static void regone(planner *plnr, kdftw codelet, const ct_desc *desc, int dec, int bufferedp) { S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0); slv->k = codelet; slv->desc = desc; slv->bufferedp = bufferedp; REGISTER_SOLVER(plnr, &(slv->super.super)); if (X(mksolver_ct_hook)) { slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix, dec, mkcldw, 0); slv->k = codelet; slv->desc = desc; slv->bufferedp = bufferedp; REGISTER_SOLVER(plnr, &(slv->super.super)); } } void X(regsolver_ct_directw)(planner *plnr, kdftw codelet, const ct_desc *desc, int dec) { regone(plnr, codelet, desc, dec, /* bufferedp */ 0); regone(plnr, codelet, desc, dec, /* bufferedp */ 1); }