/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "dft.h" typedef struct { solver super; } S; typedef struct { plan_dft super; twid *td; INT n, is, os; } P; static void cdot(INT n, const E *x, const R *w, R *or0, R *oi0, R *or1, R *oi1) { INT i; E rr = x[0], ri = 0, ir = x[1], ii = 0; x += 2; for (i = 1; i + i < n; ++i) { rr += x[0] * w[0]; ir += x[1] * w[0]; ri += x[2] * w[1]; ii += x[3] * w[1]; x += 4; w += 2; } *or0 = rr + ii; *oi0 = ir - ri; *or1 = rr - ii; *oi1 = ir + ri; } static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o, R *pr, R *pi) { INT i; E sr, si; o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2; for (i = 1; i + i < n; ++i) { sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]); si += (o[1] = xi[i * xs] + xi[(n - i) * xs]); o[2] = xr[i * xs] - xr[(n - i) * xs]; o[3] = xi[i * xs] - xi[(n - i) * xs]; o += 4; } *pr = sr; *pi = si; } static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; INT i; INT n = ego->n, is = ego->is, os = ego->os; const R *W = ego->td->W; E *buf; size_t bufsz = n * 2 * sizeof(E); BUF_ALLOC(E *, buf, bufsz); hartley(n, ri, ii, is, buf, ro, io); for (i = 1; i + i < n; ++i) { cdot(n, buf, W, ro + i * os, io + i * os, ro + (n - i) * os, io + (n - i) * os); W += n - 1; } BUF_FREE(buf, bufsz); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; static const tw_instr half_tw[] = { { TW_HALF, 1, 0 }, { TW_NEXT, 1, 0 } }; X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, (ego->n - 1) / 2); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(dft-generic-%D)", ego->n); } static int applicable0(const problem *p_) { const problem_dft *p = (const problem_dft *) p_; return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && (p->sz->dims[0].n % 2) == 1 && X(is_prime)(p->sz->dims[0].n) ); } static int applicable(const solver *ego, const problem *p_, const planner *plnr) { UNUSED(ego); if (NO_SLOWP(plnr)) return 0; if (!applicable0(p_)) return 0; if (NO_LARGE_GENERICP(plnr)) { const problem_dft *p = (const problem_dft *) p_; if (p->sz->dims[0].n >= GENERIC_MIN_BAD) return 0; } return 1; } static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) { const problem_dft *p; P *pln; INT n; static const plan_adt padt = { X(dft_solve), awake, print, X(plan_null_destroy) }; if (!applicable(ego, p_, plnr)) return (plan *)0; pln = MKPLAN_DFT(P, &padt, apply); p = (const problem_dft *) p_; pln->n = n = p->sz->dims[0].n; pln->is = p->sz->dims[0].is; pln->os = p->sz->dims[0].os; pln->td = 0; pln->super.super.ops.add = (n-1) * 5; pln->super.super.ops.mul = 0; pln->super.super.ops.fma = (n-1) * (n-1) ; #if 0 /* these are nice pipelined sequential loads and should cost nothing */ pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */ #endif return &(pln->super.super); } static solver *mksolver(void) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(dft_generic_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }