/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* trigonometric functions */ #include "ifftw.h" #include #if defined(TRIGREAL_IS_LONG_DOUBLE) # define COS cosl # define SIN sinl # define KTRIG(x) (x##L) # ifndef HAVE_DECL_SINL extern long double sinl(long double x); # endif # ifndef HAVE_DECL_COSL extern long double cosl(long double x); # endif #elif defined(TRIGREAL_IS_QUAD) # define COS cosq # define SIN sinq # define KTRIG(x) (x##Q) extern __float128 sinq(__float128 x); extern __float128 cosq(__float128 x); #else # define COS cos # define SIN sin # define KTRIG(x) (x) #endif static const trigreal K2PI = KTRIG(6.2831853071795864769252867665590057683943388); #define by2pi(m, n) ((K2PI * (m)) / (n)) /* * Improve accuracy by reducing x to range [0..1/8] * before multiplication by 2 * PI. */ static void real_cexp(INT m, INT n, trigreal *out) { trigreal theta, c, s, t; unsigned octant = 0; INT quarter_n = n; n += n; n += n; m += m; m += m; if (m < 0) m += n; if (m > n - m) { m = n - m; octant |= 4; } if (m - quarter_n > 0) { m = m - quarter_n; octant |= 2; } if (m > quarter_n - m) { m = quarter_n - m; octant |= 1; } theta = by2pi(m, n); c = COS(theta); s = SIN(theta); if (octant & 1) { t = c; c = s; s = t; } if (octant & 2) { t = c; c = -s; s = t; } if (octant & 4) { s = -s; } out[0] = c; out[1] = s; } static INT choose_twshft(INT n) { INT log2r = 0; while (n > 0) { ++log2r; n /= 4; } return log2r; } static void cexpl_sqrtn_table(triggen *p, INT m, trigreal *res) { m += p->n * (m < 0); { INT m0 = m & p->twmsk; INT m1 = m >> p->twshft; trigreal wr0 = p->W0[2 * m0]; trigreal wi0 = p->W0[2 * m0 + 1]; trigreal wr1 = p->W1[2 * m1]; trigreal wi1 = p->W1[2 * m1 + 1]; res[0] = wr1 * wr0 - wi1 * wi0; res[1] = wi1 * wr0 + wr1 * wi0; } } /* multiply (xr, xi) by exp(FFT_SIGN * 2*pi*i*m/n) */ static void rotate_sqrtn_table(triggen *p, INT m, R xr, R xi, R *res) { m += p->n * (m < 0); { INT m0 = m & p->twmsk; INT m1 = m >> p->twshft; trigreal wr0 = p->W0[2 * m0]; trigreal wi0 = p->W0[2 * m0 + 1]; trigreal wr1 = p->W1[2 * m1]; trigreal wi1 = p->W1[2 * m1 + 1]; trigreal wr = wr1 * wr0 - wi1 * wi0; trigreal wi = wi1 * wr0 + wr1 * wi0; #if FFT_SIGN == -1 res[0] = xr * wr + xi * wi; res[1] = xi * wr - xr * wi; #else res[0] = xr * wr - xi * wi; res[1] = xi * wr + xr * wi; #endif } } static void cexpl_sincos(triggen *p, INT m, trigreal *res) { real_cexp(m, p->n, res); } static void cexp_zero(triggen *p, INT m, R *res) { UNUSED(p); UNUSED(m); res[0] = 0; res[1] = 0; } static void cexpl_zero(triggen *p, INT m, trigreal *res) { UNUSED(p); UNUSED(m); res[0] = 0; res[1] = 0; } static void cexp_generic(triggen *p, INT m, R *res) { trigreal resl[2]; p->cexpl(p, m, resl); res[0] = (R)resl[0]; res[1] = (R)resl[1]; } static void rotate_generic(triggen *p, INT m, R xr, R xi, R *res) { trigreal w[2]; p->cexpl(p, m, w); res[0] = xr * w[0] - xi * (FFT_SIGN * w[1]); res[1] = xi * w[0] + xr * (FFT_SIGN * w[1]); } triggen *X(mktriggen)(enum wakefulness wakefulness, INT n) { INT i, n0, n1; triggen *p = (triggen *)MALLOC(sizeof(*p), TWIDDLES); p->n = n; p->W0 = p->W1 = 0; p->cexp = 0; p->rotate = 0; switch (wakefulness) { case SLEEPY: A(0 /* can't happen */); break; case AWAKE_SQRTN_TABLE: { INT twshft = choose_twshft(n); p->twshft = twshft; p->twradix = ((INT)1) << twshft; p->twmsk = p->twradix - 1; n0 = p->twradix; n1 = (n + n0 - 1) / n0; p->W0 = (trigreal *)MALLOC(n0 * 2 * sizeof(trigreal), TWIDDLES); p->W1 = (trigreal *)MALLOC(n1 * 2 * sizeof(trigreal), TWIDDLES); for (i = 0; i < n0; ++i) real_cexp(i, n, p->W0 + 2 * i); for (i = 0; i < n1; ++i) real_cexp(i * p->twradix, n, p->W1 + 2 * i); p->cexpl = cexpl_sqrtn_table; p->rotate = rotate_sqrtn_table; break; } case AWAKE_SINCOS: p->cexpl = cexpl_sincos; break; case AWAKE_ZERO: p->cexp = cexp_zero; p->cexpl = cexpl_zero; break; } if (!p->cexp) { if (sizeof(trigreal) == sizeof(R)) p->cexp = (void (*)(triggen *, INT, R *))p->cexpl; else p->cexp = cexp_generic; } if (!p->rotate) p->rotate = rotate_generic; return p; } void X(triggen_destroy)(triggen *p) { X(ifree0)(p->W0); X(ifree0)(p->W1); X(ifree)(p); }