/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in general for all of the r2r variants...oh well, for now */ #include "verify.h" #include #include #include typedef struct { bench_problem *p; bench_tensor *probsz; bench_tensor *totalsz; bench_tensor *pckdsz; bench_tensor *pckdvecsz; } info; /* * Utility functions: */ static double dabs(double x) { return (x < 0.0) ? -x : x; } static double dmin(double x, double y) { return (x < y) ? x : y; } static double raerror(R *a, R *b, int n) { if (n > 0) { /* compute the relative Linf error */ double e = 0.0, mag = 0.0; int i; for (i = 0; i < n; ++i) { e = dmax(e, dabs(a[i] - b[i])); mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i]))); } if (dabs(mag) < 1e-14 && dabs(e) < 1e-14) e = 0.0; else e /= mag; #ifdef HAVE_ISNAN BENCH_ASSERT(!isnan(e)); #endif return e; } else return 0.0; } #define by2pi(m, n) ((K2PI * (m)) / (n)) /* * Improve accuracy by reducing x to range [0..1/8] * before multiplication by 2 * PI. */ static trigreal bench_sincos(trigreal m, trigreal n, int sinp) { /* waiting for C to get tail recursion... */ trigreal half_n = n * 0.5; trigreal quarter_n = half_n * 0.5; trigreal eighth_n = quarter_n * 0.5; trigreal sgn = 1.0; if (sinp) goto sin; cos: if (m < 0) { m = -m; /* goto cos; */ } if (m > half_n) { m = n - m; goto cos; } if (m > eighth_n) { m = quarter_n - m; goto sin; } return sgn * COS(by2pi(m, n)); msin: sgn = -sgn; sin: if (m < 0) { m = -m; goto msin; } if (m > half_n) { m = n - m; goto msin; } if (m > eighth_n) { m = quarter_n - m; goto cos; } return sgn * SIN(by2pi(m, n)); } static trigreal cos2pi(int m, int n) { return bench_sincos((trigreal)m, (trigreal)n, 0); } static trigreal sin2pi(int m, int n) { return bench_sincos((trigreal)m, (trigreal)n, 1); } static trigreal cos00(int i, int j, int n) { return cos2pi(i * j, n); } static trigreal cos01(int i, int j, int n) { return cos00(i, 2*j + 1, 2*n); } static trigreal cos10(int i, int j, int n) { return cos00(2*i + 1, j, 2*n); } static trigreal cos11(int i, int j, int n) { return cos00(2*i + 1, 2*j + 1, 4*n); } static trigreal sin00(int i, int j, int n) { return sin2pi(i * j, n); } static trigreal sin01(int i, int j, int n) { return sin00(i, 2*j + 1, 2*n); } static trigreal sin10(int i, int j, int n) { return sin00(2*i + 1, j, 2*n); } static trigreal sin11(int i, int j, int n) { return sin00(2*i + 1, 2*j + 1, 4*n); } static trigreal realhalf(int i, int j, int n) { UNUSED(i); if (j <= n - j) return 1.0; else return 0.0; } static trigreal coshalf(int i, int j, int n) { if (j <= n - j) return cos00(i, j, n); else return cos00(i, n - j, n); } static trigreal unity(int i, int j, int n) { UNUSED(i); UNUSED(j); UNUSED(n); return 1.0; } typedef trigreal (*trigfun)(int, int, int); static void rarand(R *a, int n) { int i; /* generate random inputs */ for (i = 0; i < n; ++i) { a[i] = mydrand(); } } /* C = A + B */ static void raadd(R *c, R *a, R *b, int n) { int i; for (i = 0; i < n; ++i) { c[i] = a[i] + b[i]; } } /* C = A - B */ static void rasub(R *c, R *a, R *b, int n) { int i; for (i = 0; i < n; ++i) { c[i] = a[i] - b[i]; } } /* B = rotate left A + rotate right A */ static void rarolr(R *b, R *a, int n, int nb, int na, r2r_kind_t k) { int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0; int i, ib, ia; for (ib = 0; ib < nb; ++ib) { for (i = 0; i < n - 1; ++i) for (ia = 0; ia < na; ++ia) b[(ib * n + i) * na + ia] = a[(ib * n + i + 1) * na + ia]; /* ugly switch to do boundary conditions for various r2r types */ switch (k) { /* periodic boundaries */ case R2R_DHT: case R2R_R2HC: for (ia = 0; ia < na; ++ia) { b[(ib * n + n - 1) * na + ia] = a[(ib * n + 0) * na + ia]; b[(ib * n + 0) * na + ia] += a[(ib * n + n - 1) * na + ia]; } break; case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */ if (n > 2) { if (n % 2 == 0) for (ia = 0; ia < na; ++ia) { b[(ib * n + n - 1) * na + ia] = 0.0; b[(ib * n + 0) * na + ia] += a[(ib * n + 1) * na + ia]; b[(ib * n + n/2) * na + ia] += + a[(ib * n + n/2 - 1) * na + ia] - a[(ib * n + n/2 + 1) * na + ia]; b[(ib * n + n/2 + 1) * na + ia] += - a[(ib * n + n/2) * na + ia]; } else for (ia = 0; ia < na; ++ia) { b[(ib * n + n - 1) * na + ia] = 0.0; b[(ib * n + 0) * na + ia] += a[(ib * n + 1) * na + ia]; b[(ib * n + n/2) * na + ia] += + a[(ib * n + n/2) * na + ia] - a[(ib * n + n/2 + 1) * na + ia]; b[(ib * n + n/2 + 1) * na + ia] += - a[(ib * n + n/2 + 1) * na + ia] - a[(ib * n + n/2) * na + ia]; } } else /* n <= 2 */ { for (ia = 0; ia < na; ++ia) { b[(ib * n + n - 1) * na + ia] = a[(ib * n + 0) * na + ia]; b[(ib * n + 0) * na + ia] += a[(ib * n + n - 1) * na + ia]; } } break; /* various even/odd boundary conditions */ case R2R_REDFT00: isL1 = isR1 = 1; goto mirrors; case R2R_REDFT01: isL1 = 1; goto mirrors; case R2R_REDFT10: isL0 = isR0 = 1; goto mirrors; case R2R_REDFT11: isL0 = 1; isR0 = -1; goto mirrors; case R2R_RODFT00: goto mirrors; case R2R_RODFT01: isR1 = 1; goto mirrors; case R2R_RODFT10: isL0 = isR0 = -1; goto mirrors; case R2R_RODFT11: isL0 = -1; isR0 = 1; goto mirrors; mirrors: for (ia = 0; ia < na; ++ia) b[(ib * n + n - 1) * na + ia] = isR0 * a[(ib * n + n - 1) * na + ia] + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia] : 0); for (ia = 0; ia < na; ++ia) b[(ib * n) * na + ia] += isL0 * a[(ib * n) * na + ia] + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0); } for (i = 1; i < n; ++i) for (ia = 0; ia < na; ++ia) b[(ib * n + i) * na + ia] += a[(ib * n + i - 1) * na + ia]; } } static void raphase_shift(R *b, R *a, int n, int nb, int na, int n0, int k0, trigfun t) { int j, jb, ja; for (jb = 0; jb < nb; ++jb) for (j = 0; j < n; ++j) { trigreal c = 2.0 * t(1, j + k0, n0); for (ja = 0; ja < na; ++ja) { int k = (jb * n + j) * na + ja; b[k] = a[k] * c; } } } /* A = alpha * A (real, in place) */ static void rascale(R *a, R alpha, int n) { int i; for (i = 0; i < n; ++i) { a[i] *= alpha; } } /* * compute rdft: */ /* copy real A into real B, using output stride of A and input stride of B */ typedef struct { dotens2_closure k; R *ra; R *rb; } cpyr_closure; static void cpyr0(dotens2_closure *k_, int indxa, int ondxa, int indxb, int ondxb) { cpyr_closure *k = (cpyr_closure *)k_; k->rb[indxb] = k->ra[ondxa]; UNUSED(indxa); UNUSED(ondxb); } static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb) { cpyr_closure k; k.k.apply = cpyr0; k.ra = ra; k.rb = rb; bench_dotens2(sza, szb, &k.k); } static void dofft(info *nfo, R *in, R *out) { cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz); after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in); doit(1, nfo->p); after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out); cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz); } static double racmp(R *a, R *b, int n, const char *test, double tol) { double d = raerror(a, b, n); if (d > tol) { ovtpvt_err("Found relative error %e (%s)\n", d, test); { int i, N; N = n > 300 && verbose <= 2 ? 300 : n; for (i = 0; i < N; ++i) ovtpvt_err("%8d %16.12f %16.12f\n", i, (double) a[i], (double) b[i]); } bench_exit(EXIT_FAILURE); } return d; } /***********************************************************************/ typedef struct { int n; /* physical size */ int n0; /* "logical" transform size */ int i0, k0; /* shifts of input/output */ trigfun ti, ts; /* impulse/shift trig functions */ } dim_stuff; static void impulse_response(int rnk, dim_stuff *d, R impulse_amp, R *A, int N) { if (rnk == 0) A[0] = impulse_amp; else { int i; N /= d->n; for (i = 0; i < d->n; ++i) { impulse_response(rnk - 1, d + 1, impulse_amp * d->ti(d->i0, d->k0 + i, d->n0), A + i * N, N); } } } /***************************************************************************/ /* * Implementation of the FFT tester described in * * Funda Ergün. Testing multivariate linear functions: Overcoming the * generator bottleneck. In Proceedings of the Twenty-Seventh Annual * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas, * Nevada, 29 May--1 June 1995. * * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000). */ static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA, R *outB, R *outC, R *tmp, int rounds, double tol) { double e = 0.0; int j; for (j = 0; j < rounds; ++j) { R alpha, beta; alpha = mydrand(); beta = mydrand(); rarand(inA, n); rarand(inB, n); dofft(nfo, inA, outA); dofft(nfo, inB, outB); rascale(outA, alpha, n); rascale(outB, beta, n); raadd(tmp, outA, outB, n); rascale(inA, alpha, n); rascale(inB, beta, n); raadd(inC, inA, inB, n); dofft(nfo, inC, outC); e = dmax(e, racmp(outC, tmp, n, "linear", tol)); } return e; } static double rimpulse(dim_stuff *d, R impulse_amp, int n, int vecn, info *nfo, R *inA, R *inB, R *inC, R *outA, R *outB, R *outC, R *tmp, int rounds, double tol) { double e = 0.0; int N = n * vecn; int i; int j; /* test 2: check that the unit impulse is transformed properly */ for (i = 0; i < N; ++i) { /* pls */ inA[i] = 0.0; } for (i = 0; i < vecn; ++i) { inA[i * n] = (i+1) / (double)(vecn+1); /* transform of the pls */ impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n], outA + i * n, n); } dofft(nfo, inA, tmp); e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol)); for (j = 0; j < rounds; ++j) { rarand(inB, N); rasub(inC, inA, inB, N); dofft(nfo, inB, outB); dofft(nfo, inC, outC); raadd(tmp, outB, outC, N); e = dmax(e, racmp(tmp, outA, N, "impulse", tol)); } return e; } static double t_shift(int n, int vecn, info *nfo, R *inA, R *inB, R *outA, R *outB, R *tmp, int rounds, double tol, dim_stuff *d) { double e = 0.0; int nb, na, dim, N = n * vecn; int i, j; bench_tensor *sz = nfo->probsz; /* test 3: check the time-shift property */ /* the paper performs more tests, but this code should be fine too */ nb = 1; na = n; /* check shifts across all SZ dimensions */ for (dim = 0; dim < sz->rnk; ++dim) { int ncur = sz->dims[dim].n; na /= ncur; for (j = 0; j < rounds; ++j) { rarand(inA, N); for (i = 0; i < vecn; ++i) { rarolr(inB + i * n, inA + i*n, ncur, nb,na, nfo->p->k[dim]); } dofft(nfo, inA, outA); dofft(nfo, inB, outB); for (i = 0; i < vecn; ++i) raphase_shift(tmp + i * n, outA + i * n, ncur, nb, na, d[dim].n0, d[dim].k0, d[dim].ts); e = dmax(e, racmp(tmp, outB, N, "time shift", tol)); } nb *= ncur; } return e; } /***********************************************************************/ void verify_r2r(bench_problem *p, int rounds, double tol, errors *e) { R *inA, *inB, *inC, *outA, *outB, *outC, *tmp; info nfo; int n, vecn, N; double impulse_amp = 1.0; dim_stuff *d; int i; if (rounds == 0) rounds = 20; /* default value */ n = tensor_sz(p->sz); vecn = tensor_sz(p->vecsz); N = n * vecn; d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk); for (i = 0; i < p->sz->rnk; ++i) { int n0, i0, k0; trigfun ti, ts; d[i].n = n0 = p->sz->dims[i].n; if (p->k[i] > R2R_DHT) n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 : (p->k[i] == R2R_RODFT00 ? 1 : 0))); switch (p->k[i]) { case R2R_R2HC: i0 = k0 = 0; ti = realhalf; ts = coshalf; break; case R2R_DHT: i0 = k0 = 0; ti = unity; ts = cos00; break; case R2R_HC2R: i0 = k0 = 0; ti = unity; ts = cos00; break; case R2R_REDFT00: i0 = k0 = 0; ti = ts = cos00; break; case R2R_REDFT01: i0 = k0 = 0; ti = ts = cos01; break; case R2R_REDFT10: i0 = k0 = 0; ti = cos10; impulse_amp *= 2.0; ts = cos00; break; case R2R_REDFT11: i0 = k0 = 0; ti = cos11; impulse_amp *= 2.0; ts = cos01; break; case R2R_RODFT00: i0 = k0 = 1; ti = sin00; impulse_amp *= 2.0; ts = cos00; break; case R2R_RODFT01: i0 = 1; k0 = 0; ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0; ts = cos01; break; case R2R_RODFT10: i0 = 0; k0 = 1; ti = sin10; impulse_amp *= 2.0; ts = cos00; break; case R2R_RODFT11: i0 = k0 = 0; ti = sin11; impulse_amp *= 2.0; ts = cos01; break; default: BENCH_ASSERT(0); return; } d[i].n0 = n0; d[i].i0 = i0; d[i].k0 = k0; d[i].ti = ti; d[i].ts = ts; } inA = (R *) bench_malloc(N * sizeof(R)); inB = (R *) bench_malloc(N * sizeof(R)); inC = (R *) bench_malloc(N * sizeof(R)); outA = (R *) bench_malloc(N * sizeof(R)); outB = (R *) bench_malloc(N * sizeof(R)); outC = (R *) bench_malloc(N * sizeof(R)); tmp = (R *) bench_malloc(N * sizeof(R)); nfo.p = p; nfo.probsz = p->sz; nfo.totalsz = tensor_append(p->vecsz, nfo.probsz); nfo.pckdsz = verify_pack(nfo.totalsz, 1); nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz)); e->i = rimpulse(d, impulse_amp, n, vecn, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds, tol); e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol); e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp, rounds, tol, d); /* grr, verify-lib.c:preserves_input() only works for complex */ if (!p->in_place && !p->destroy_input) { bench_tensor *totalsz_swap, *pckdsz_swap; totalsz_swap = tensor_copy_swapio(nfo.totalsz); pckdsz_swap = tensor_copy_swapio(nfo.pckdsz); for (i = 0; i < rounds; ++i) { rarand(inA, N); dofft(&nfo, inA, outB); cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap); racmp(inB, inA, N, "preserves_input", 0.0); } tensor_destroy(totalsz_swap); tensor_destroy(pckdsz_swap); } tensor_destroy(nfo.totalsz); tensor_destroy(nfo.pckdsz); tensor_destroy(nfo.pckdvecsz); bench_free(tmp); bench_free(outC); bench_free(outB); bench_free(outA); bench_free(inC); bench_free(inB); bench_free(inA); bench_free(d); } typedef struct { dofft_closure k; bench_problem *p; int n0; } dofft_r2r_closure; static void cpyr1(int n, R *in, int is, R *out, int os, R scale) { int i; for (i = 0; i < n; ++i) out[i * os] = in[i * is] * scale; } static void mke00(C *a, int n, int c) { int i; for (i = 1; i + i < n; ++i) a[n - i][c] = a[i][c]; } static void mkre00(C *a, int n) { mkreal(a, n); mke00(a, n, 0); } static void mkimag(C *a, int n) { int i; for (i = 0; i < n; ++i) c_re(a[i]) = 0.0; } static void mko00(C *a, int n, int c) { int i; a[0][c] = 0.0; for (i = 1; i + i < n; ++i) a[n - i][c] = -a[i][c]; if (i + i == n) a[i][c] = 0.0; } static void mkro00(C *a, int n) { mkreal(a, n); mko00(a, n, 0); } static void mkio00(C *a, int n) { mkimag(a, n); mko00(a, n, 1); } static void mkre01(C *a, int n) /* n should be be multiple of 4 */ { R a0; a0 = c_re(a[0]); mko00(a, n/2, 0); c_re(a[n/2]) = -(c_re(a[0]) = a0); mkre00(a, n); } static void mkro01(C *a, int n) /* n should be be multiple of 4 */ { c_re(a[0]) = c_im(a[0]) = 0.0; mkre00(a, n/2); mkro00(a, n); } static void mkoddonly(C *a, int n) { int i; for (i = 0; i < n; i += 2) c_re(a[i]) = c_im(a[i]) = 0.0; } static void mkre10(C *a, int n) { mkoddonly(a, n); mkre00(a, n); } static void mkio10(C *a, int n) { mkoddonly(a, n); mkio00(a, n); } static void mkre11(C *a, int n) { mkoddonly(a, n); mko00(a, n/2, 0); mkre00(a, n); } static void mkro11(C *a, int n) { mkoddonly(a, n); mkre00(a, n/2); mkro00(a, n); } static void mkio11(C *a, int n) { mkoddonly(a, n); mke00(a, n/2, 1); mkio00(a, n); } static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out) { dofft_r2r_closure *k = (dofft_r2r_closure *)k_; bench_problem *p = k->p; bench_real *ri, *ro; int n, is, os; n = p->sz->dims[0].n; is = p->sz->dims[0].is; os = p->sz->dims[0].os; ri = (bench_real *) p->in; ro = (bench_real *) p->out; switch (p->k[0]) { case R2R_R2HC: cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); break; case R2R_HC2R: cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0); cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0); break; case R2R_REDFT00: cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); break; case R2R_RODFT00: cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0); break; case R2R_REDFT01: cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); break; case R2R_REDFT10: cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); break; case R2R_RODFT01: cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0); break; case R2R_RODFT10: cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0); break; case R2R_REDFT11: cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); break; case R2R_RODFT11: cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); break; default: BENCH_ASSERT(0); /* not yet implemented */ } after_problem_rcopy_from(p, ri); doit(1, p); after_problem_rcopy_to(p, ro); switch (p->k[0]) { case R2R_R2HC: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0); cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0); c_im(out[0]) = 0.0; if (n % 2 == 0) c_im(out[n/2]) = 0.0; mkhermitian1(out, n); break; case R2R_HC2R: if (k->k.recopy_input) { cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0); cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0); } cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); mkreal(out, n); break; case R2R_REDFT00: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); mkre00(out, k->n0); break; case R2R_RODFT00: if (k->k.recopy_input) cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0); cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0); mkio00(out, k->n0); break; case R2R_REDFT01: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0); mkre10(out, k->n0); break; case R2R_REDFT10: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0); cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); mkre01(out, k->n0); break; case R2R_RODFT01: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0); cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0); mkio10(out, k->n0); break; case R2R_RODFT10: if (k->k.recopy_input) cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0); cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0); mkro01(out, k->n0); break; case R2R_REDFT11: if (k->k.recopy_input) cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0); cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0); mkre11(out, k->n0); break; case R2R_RODFT11: if (k->k.recopy_input) cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0); cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0); mkio11(out, k->n0); break; default: BENCH_ASSERT(0); /* not yet implemented */ } } void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds, double t[6]) { dofft_r2r_closure k; int n, n0 = 1; C *a, *b; aconstrain constrain = 0; BENCH_ASSERT(p->kind == PROBLEM_R2R); BENCH_ASSERT(p->sz->rnk == 1); BENCH_ASSERT(p->vecsz->rnk == 0); k.k.apply = r2r_apply; k.k.recopy_input = 0; k.p = p; n = tensor_sz(p->sz); switch (p->k[0]) { case R2R_R2HC: constrain = mkreal; n0 = n; break; case R2R_HC2R: constrain = mkhermitian1; n0 = n; break; case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break; case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break; case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break; case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break; case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break; case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break; case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break; case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break; default: BENCH_ASSERT(0); /* not yet implemented */ } k.n0 = n0; a = (C *) bench_malloc(n0 * sizeof(C)); b = (C *) bench_malloc(n0 * sizeof(C)); accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t); bench_free(b); bench_free(a); }