/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "ifftw-mpi.h" INT XM(num_blocks)(INT n, INT block) { return (n + block - 1) / block; } int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm) { int n_pes; MPI_Comm_size(comm, &n_pes); return n_pes >= XM(num_blocks)(n, block); } /* Pick a default block size for dividing a problem of size n among n_pes processes. Divide as equally as possible, while minimizing the maximum block size among the processes as well as the number of processes with nonzero blocks. */ INT XM(default_block)(INT n, int n_pes) { return ((n + n_pes - 1) / n_pes); } /* For a given block size and dimension n, compute the block size on the given process. */ INT XM(block)(INT n, INT block, int which_block) { INT n_blocks = XM(num_blocks)(n, block); if (which_block >= n_blocks) return 0; else return ((which_block == n_blocks - 1) ? (n - which_block * block) : block); } static INT num_blocks_kind(const ddim *dim, block_kind k) { return XM(num_blocks)(dim->n, dim->b[k]); } INT XM(num_blocks_total)(const dtensor *sz, block_kind k) { if (FINITE_RNK(sz->rnk)) { int i; INT ntot = 1; for (i = 0; i < sz->rnk; ++i) ntot *= num_blocks_kind(sz->dims + i, k); return ntot; } else return 0; } int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe) { return (which_pe >= XM(num_blocks_total)(sz, k)); } /* Given a non-idle process which_pe, computes the coordinate vector coords[rnk] giving the coordinates of a block in the matrix of blocks. k specifies whether we are talking about the input or output data distribution. */ void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, INT *coords) { int i; A(!XM(idle_process)(sz, k, which_pe) && FINITE_RNK(sz->rnk)); for (i = sz->rnk - 1; i >= 0; --i) { INT nb = num_blocks_kind(sz->dims + i, k); coords[i] = which_pe % nb; which_pe /= nb; } } INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe) { if (XM(idle_process)(sz, k, which_pe)) return 0; else { int i; INT N = 1, *coords; STACK_MALLOC(INT*, coords, sizeof(INT) * sz->rnk); XM(block_coords)(sz, k, which_pe, coords); for (i = 0; i < sz->rnk; ++i) N *= XM(block)(sz->dims[i].n, sz->dims[i].b[k], coords[i]); STACK_FREE(coords); return N; } } /* returns whether sz is local for dims >= dim */ int XM(is_local_after)(int dim, const dtensor *sz, block_kind k) { if (FINITE_RNK(sz->rnk)) for (; dim < sz->rnk; ++dim) if (XM(num_blocks)(sz->dims[dim].n, sz->dims[dim].b[k]) > 1) return 0; return 1; } int XM(is_local)(const dtensor *sz, block_kind k) { return XM(is_local_after)(0, sz, k); } /* Return whether sz is distributed for k according to a simple 1d block distribution in the first or second dimensions */ int XM(is_block1d)(const dtensor *sz, block_kind k) { int i; if (!FINITE_RNK(sz->rnk)) return 0; for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ; return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k)); }