/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Complex DFTs of rank == 1 via six-step algorithm. */ #include "mpi-dft.h" #include "mpi-transpose.h" #include "dft.h" typedef struct { solver super; rdftapply apply; /* apply_ddft_first or apply_ddft_last */ int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ } S; typedef struct { plan_mpi_dft super; triggen *t; plan *cldt, *cld_ddft, *cld_dft; INT roff, ioff; int preserve_input; INT vn, xmin, xmax, xs, m, r; } P; static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi) { void (*rotate)(triggen *, INT, R, R, R *) = t->rotate; INT im, iv; for (im = 0; im < m; ++im) for (iv = 0; iv < vn; ++iv) { /* TODO: modify/inline rotate function so that it can do whole vn vector at once? */ R c[2]; rotate(t, ir * im, *xr, *xi, c); *xr = c[0]; *xi = c[1]; xr += 2; xi += 2; } } /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT, plus twiddle factors between the size-m and size-r 1d DFTs, where the m dimension is initially distributed. The output is transposed to r x m where the r dimension is distributed. This algorithm follows the general sequence: global transpose (m x r -> r x m) DFTs of size m multiply by twiddles + global transpose (r x m -> m x r) DFTs of size r global transpose (m x r -> r x m) where the multiplication by twiddles can come before or after the middle transpose. The first/last transposes are omitted for SCRAMBLED_IN/OUT formats, respectively. However, we wish to exploit our dft-rank1-bigvec solver, which solves a vector of distributed DFTs via transpose+dft+transpose. Therefore, we can group *either* the DFTs of size m *or* the DFTs of size r with their surrounding transposes as a single distributed-DFT (ddft) plan. These two variations correspond to apply_ddft_first or apply_ddft_last, respectively. */ static void apply_ddft_first(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_dft *cld_dft; plan_rdft *cldt, *cld_ddft; INT roff, ioff, im, mmax, ms, r, vn; triggen *t; R *dI, *dO; /* distributed size-m DFTs, with output in m x r format */ cld_ddft = (plan_rdft *) ego->cld_ddft; cld_ddft->apply(ego->cld_ddft, I, O); cldt = (plan_rdft *) ego->cldt; if (ego->preserve_input || !cldt) I = O; /* twiddle multiplications, followed by 1d DFTs of size-r */ cld_dft = (plan_dft *) ego->cld_dft; roff = ego->roff; ioff = ego->ioff; mmax = ego->xmax; ms = ego->xs; t = ego->t; r = ego->r; vn = ego->vn; dI = O; dO = I; for (im = ego->xmin; im <= mmax; ++im) { do_twiddle(t, im, r, vn, dI+roff, dI+ioff); cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); dI += ms; dO += ms; } /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */ if (cldt) cldt->apply((plan *) cldt, I, O); } static void apply_ddft_last(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_dft *cld_dft; plan_rdft *cldt, *cld_ddft; INT roff, ioff, ir, rmax, rs, m, vn; triggen *t; R *dI, *dO0, *dO; /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */ cldt = (plan_rdft *) ego->cldt; if (cldt) { cldt->apply((plan *) cldt, I, O); dI = O; } else dI = I; if (ego->preserve_input) dO = O; else dO = I; dO0 = dO; /* 1d DFTs of size m, followed by twiddle multiplications */ cld_dft = (plan_dft *) ego->cld_dft; roff = ego->roff; ioff = ego->ioff; rmax = ego->xmax; rs = ego->xs; t = ego->t; m = ego->m; vn = ego->vn; for (ir = ego->xmin; ir <= rmax; ++ir) { cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); do_twiddle(t, ir, m, vn, dO+roff, dO+ioff); dI += rs; dO += rs; } /* distributed size-r DFTs, with output in r x m format */ cld_ddft = (plan_rdft *) ego->cld_ddft; cld_ddft->apply(ego->cld_ddft, dO0, O); } static int applicable(const S *ego, const problem *p_, const planner *plnr, INT *r, INT rblock[2], INT mblock[2]) { const problem_mpi_dft *p = (const problem_mpi_dft *) p_; int n_pes; MPI_Comm_size(p->comm, &n_pes); return (1 && p->sz->rnk == 1 && ONLY_SCRAMBLEDP(p->flags) && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) && p->I != p->O)) && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last) && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first) && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ || !XM(dft_serial_applicable)(p)) /* disallow if dft-rank1-bigvec is applicable since the data distribution may be slightly different (ugh!) */ && (p->vn < n_pes || p->flags) && (*r = XM(choose_radix)(p->sz->dims[0], n_pes, p->flags, p->sign, rblock, mblock)) /* ddft_first or last has substantial advantages in the bigvec transpositions for the common case where n_pes == n/r or r, respectively */ && (!NO_UGLYP(plnr) || !(*r == n_pes && ego->apply == apply_ddft_first) || !(p->sz->dims[0].n / *r == n_pes && ego->apply == apply_ddft_last)) ); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cldt, wakefulness); X(plan_awake)(ego->cld_dft, wakefulness); X(plan_awake)(ego->cld_ddft, wakefulness); switch (wakefulness) { case SLEEPY: X(triggen_destroy)(ego->t); ego->t = 0; break; default: ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m); break; } } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldt); X(plan_destroy_internal)(ego->cld_dft); X(plan_destroy_internal)(ego->cld_ddft); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))", ego->r, ego->super.apply == apply_ddft_first ? "/first" : "/last", ego->preserve_input==2 ?"/p":"", ego->cld_ddft, ego->cld_dft, ego->cldt); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_mpi_dft *p; P *pln; plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0; R *ri, *ii, *ro, *io, *I, *O; INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb; int my_pe, n_pes, preserve_input, ddft_first; dtensor *sz; static const plan_adt padt = { XM(dft_solve), awake, print, destroy }; UNUSED(ego); if (!applicable(ego, p_, plnr, &r, rblock, mblock)) return (plan *) 0; p = (const problem_mpi_dft *) p_; MPI_Comm_rank(p->comm, &my_pe); MPI_Comm_size(p->comm, &n_pes); m = p->sz->dims[0].n / r; /* some hackery so that we can plan both ddft_first and ddft_last as if they were ddft_first */ if ((ddft_first = (ego->apply == apply_ddft_first))) { rp = r; mp = m; mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB]; mpb = XM(block)(mp, mpblock[OB], my_pe); } else { rp = m; mp = r; mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB]; mpb = XM(block)(mp, mpblock[IB], my_pe); } preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); sz = XM(mkdtensor)(1); sz->dims[0].n = mp; sz->dims[0].b[IB] = mpblock[IB]; sz->dims[0].b[OB] = mpblock[OB]; I = (ddft_first || !preserve_input) ? p->I : p->O; O = p->O; cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn, I, O, p->comm, p->sign, RANK1_BIGVEC_ONLY)); if (XM(any_true)(!cld_ddft, p->comm)) goto nada; I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2); O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I, rp * p->vn * 2); X(extract_reim)(p->sign, I, &ri, &ii); X(extract_reim)(p->sign, O, &ro, &io); cld_dft = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2), X(mktensor_1d)(p->vn, 2, 2), ri, ii, ro, io)); if (XM(any_true)(!cld_dft, p->comm)) goto nada; if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */ I = (ddft_first && preserve_input) ? p->O : p->I; O = p->O; cldt = X(mkplan_d)(plnr, XM(mkproblem_transpose)( m, r, p->vn * 2, I, O, ddft_first ? mblock[OB] : mblock[IB], ddft_first ? rblock[OB] : rblock[IB], p->comm, 0)); if (XM(any_true)(!cldt, p->comm)) goto nada; } pln = MKPLAN_MPI_DFT(P, &padt, ego->apply); pln->cld_ddft = cld_ddft; pln->cld_dft = cld_dft; pln->cldt = cldt; pln->preserve_input = preserve_input; X(extract_reim)(p->sign, p->O, &ro, &io); pln->roff = ro - p->O; pln->ioff = io - p->O; pln->vn = p->vn; pln->m = m; pln->r = r; pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe; pln->xmax = pln->xmin + mpb - 1; pln->xs = rp * p->vn * 2; pln->t = 0; X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops); if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops); { double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn; pln->super.super.ops.mul += 8 * n0; pln->super.super.ops.add += 4 * n0; pln->super.super.ops.other += 8 * n0; } return &(pln->super.super); nada: X(plan_destroy_internal)(cldt); X(plan_destroy_internal)(cld_dft); X(plan_destroy_internal)(cld_ddft); return (plan *) 0; } static solver *mksolver(rdftapply apply, int preserve_input) { static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->apply = apply; slv->preserve_input = preserve_input; return &(slv->super); } void XM(dft_rank1_register)(planner *p) { rdftapply apply[] = { apply_ddft_first, apply_ddft_last }; unsigned int iapply; int preserve_input; for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply) for (preserve_input = 0; preserve_input <= 1; ++preserve_input) REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input)); }