/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* direct RDFT2 R2HC/HC2R solver, if we have a codelet */ #include "rdft.h" typedef struct { solver super; const kr2c_desc *desc; kr2c k; } S; typedef struct { plan_rdft2 super; stride rs, cs; INT vl; INT ivs, ovs; kr2c k; const S *slv; INT ilast; } P; static void apply(const plan *ego_, R *r0, R *r1, R *cr, R *ci) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k(r0, r1, cr, ci, ego->rs, ego->cs, ego->cs, ego->vl, ego->ivs, ego->ovs); } static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) { const P *ego = (const P *) ego_; INT i, vl = ego->vl, ovs = ego->ovs; ASSERT_ALIGNED_DOUBLE; ego->k(r0, r1, cr, ci, ego->rs, ego->cs, ego->cs, vl, ego->ivs, ovs); for (i = 0; i < vl; ++i, ci += ovs) ci[0] = ci[ego->ilast] = 0; } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->rs); X(stride_destroy)(ego->cs); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; p->print(p, "(rdft2-%s-direct-%D%v \"%s\")", X(rdft_kind_str)(s->desc->genus->kind), s->desc->n, ego->vl, s->desc->nam); } static int applicable(const solver *ego_, const problem *p_) { const S *ego = (const S *) ego_; const kr2c_desc *desc = ego->desc; const problem_rdft2 *p = (const problem_rdft2 *) p_; INT vl; INT ivs, ovs; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == desc->n && p->kind == desc->genus->kind /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && (0 /* can operate out-of-place */ || p->r0 != p->cr /* * can compute one transform in-place, no matter * what the strides are. */ || p->vecsz->rnk == 0 /* can operate in-place as long as strides are the same */ || X(rdft2_inplace_strides)(p, RNK_MINFTY) ) ); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_rdft2 *p; iodim *d; int r2hc_kindp; static const plan_adt padt = { X(rdft2_solve), X(null_awake), print, destroy }; UNUSED(plnr); if (!applicable(ego_, p_)) return (plan *)0; p = (const problem_rdft2 *) p_; r2hc_kindp = R2HC_KINDP(p->kind); A(r2hc_kindp || HC2R_KINDP(p->kind)); pln = MKPLAN_RDFT2(P, &padt, p->kind == R2HC ? apply_r2hc : apply); d = p->sz->dims; pln->k = ego->k; pln->rs = X(mkstride)(d->n, r2hc_kindp ? d->is : d->os); pln->cs = X(mkstride)(d->n, r2hc_kindp ? d->os : d->is); X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); /* Nyquist freq., if any */ pln->ilast = (d->n % 2) ? 0 : (d->n/2) * d->os; pln->slv = ego; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl / ego->desc->genus->vl, &ego->desc->ops, &pln->super.super.ops); if (p->kind == R2HC) pln->super.super.ops.other += 2 * pln->vl; /* + 2 stores */ pln->super.super.could_prune_now_p = 1; return &(pln->super.super); } /* constructor */ solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc) { static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->k = k; slv->desc = desc; return &(slv->super); }