/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "rdft.h" typedef struct { solver super; } S; typedef struct { plan_rdft2 super; plan *cld, *cldrest; INT n, vl, nbuf, bufdist; INT cs, ivs, ovs; } P; /***************************************************************************/ /* FIXME: have alternate copy functions that push a vector loop inside the n loops? */ /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */ static void hc2c(INT n, R *r, R *rio, R *iio, INT os) { INT i; rio[0] = r[0]; iio[0] = 0; for (i = 1; i + i < n; ++i) { rio[i * os] = r[i]; iio[i * os] = r[n - i]; } if (i + i == n) { /* store the Nyquist frequency */ rio[i * os] = r[i]; iio[i * os] = K(0.0); } } /* reverse of hc2c */ static void c2hc(INT n, R *rio, R *iio, INT is, R *r) { INT i; r[0] = rio[0]; for (i = 1; i + i < n; ++i) { r[i] = rio[i * is]; r[n - i] = iio[i * is]; } if (i + i == n) /* store the Nyquist frequency */ r[i] = rio[i * is]; } /***************************************************************************/ static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) { const P *ego = (const P *) ego_; plan_rdft *cld = (plan_rdft *) ego->cld; INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; INT n = ego->n; INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs; R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); plan_rdft2 *cldrest; for (i = nbuf; i <= vl; i += nbuf) { /* transform to bufs: */ cld->apply((plan *) cld, r0, bufs); r0 += ivs * nbuf; r1 += ivs * nbuf; /* copy back */ for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs) hc2c(n, bufs + j*bufdist, cr, ci, os); } X(ifree)(bufs); /* Do the remaining transforms, if any: */ cldrest = (plan_rdft2 *) ego->cldrest; cldrest->apply((plan *) cldrest, r0, r1, cr, ci); } static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) { const P *ego = (const P *) ego_; plan_rdft *cld = (plan_rdft *) ego->cld; INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; INT n = ego->n; INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs; R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); plan_rdft2 *cldrest; for (i = nbuf; i <= vl; i += nbuf) { /* copy to bufs */ for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs) c2hc(n, cr, ci, is, bufs + j*bufdist); /* transform back: */ cld->apply((plan *) cld, bufs, r0); r0 += ovs * nbuf; r1 += ovs * nbuf; } X(ifree)(bufs); /* Do the remaining transforms, if any: */ cldrest = (plan_rdft2 *) ego->cldrest; cldrest->apply((plan *) cldrest, r0, r1, cr, ci); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld, wakefulness); X(plan_awake)(ego->cldrest, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldrest); X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))", ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", ego->n, ego->nbuf, ego->vl, ego->bufdist % ego->n, ego->cld, ego->cldrest); } static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl) { INT is, os, ivs, ovs; if (p->r0 != p->cr) return 1; if (X(rdft2_inplace_strides(p, RNK_MINFTY))) return 1; A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */ X(rdft2_strides)(p->kind, p->sz->dims, &is, &os); X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs); /* handle one potentially common case: "contiguous" real and complex arrays, which overlap because of the differing sizes. */ if (n * X(iabs)(is) <= X(iabs)(ivs) && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs) && ( ((p->cr - p->ci) <= X(iabs)(os)) || ((p->ci - p->cr) <= X(iabs)(os)) ) && ivs > 0 && ovs > 0) { INT vsmin = X(imin)(ivs, ovs); INT vsmax = X(imax)(ivs, ovs); return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin); } return vl; /* punt: just buffer the whole vector */ } static int applicable0(const problem *p_, const S *ego, const planner *plnr) { const problem_rdft2 *p = (const problem_rdft2 *) p_; UNUSED(ego); return(1 && p->vecsz->rnk <= 1 && p->sz->rnk == 1 /* FIXME: does it make sense to do R2HCII ? */ && (p->kind == R2HC || p->kind == HC2R) /* real strides must allow for reduction to rdft */ && (2 * (p->r1 - p->r0) == (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os))) && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) ); } static int applicable(const problem *p_, const S *ego, const planner *plnr) { const problem_rdft2 *p; if (NO_BUFFERINGP(plnr)) return 0; if (!applicable0(p_, ego, plnr)) return 0; p = (const problem_rdft2 *) p_; if (NO_UGLYP(plnr)) { if (p->r0 != p->cr) return 0; if (X(toobig)(p->sz->dims[0].n)) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; plan *cld = (plan *) 0; plan *cldrest = (plan *) 0; const problem_rdft2 *p = (const problem_rdft2 *) p_; R *bufs = (R *) 0; INT nbuf = 0, bufdist, n, vl; INT ivs, ovs, rs, id, od; static const plan_adt padt = { X(rdft2_solve), awake, print, destroy }; if (!applicable(p_, ego, plnr)) goto nada; n = p->sz->dims[0].n; X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl)); bufdist = X(bufdist)(n, vl); A(nbuf > 0); /* initial allocation for the purpose of planning */ bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); id = ivs * (nbuf * (vl / nbuf)); od = ovs * (nbuf * (vl / nbuf)); if (p->kind == R2HC) { cld = X(mkplan_f_d)( plnr, X(mkproblem_rdft_d)( X(mktensor_1d)(n, p->sz->dims[0].is/2, 1), X(mktensor_1d)(nbuf, ivs, bufdist), TAINT(p->r0, ivs * nbuf), bufs, &p->kind), 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); if (!cld) goto nada; X(ifree)(bufs); bufs = 0; cldrest = X(mkplan_d)(plnr, X(mkproblem_rdft2_d)( X(tensor_copy)(p->sz), X(mktensor_1d)(vl % nbuf, ivs, ovs), p->r0 + id, p->r1 + id, p->cr + od, p->ci + od, p->kind)); if (!cldrest) goto nada; pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); } else { A(p->kind == HC2R); cld = X(mkplan_f_d)( plnr, X(mkproblem_rdft_d)( X(mktensor_1d)(n, 1, p->sz->dims[0].os/2), X(mktensor_1d)(nbuf, bufdist, ovs), bufs, TAINT(p->r0, ovs * nbuf), &p->kind), 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */ if (!cld) goto nada; X(ifree)(bufs); bufs = 0; cldrest = X(mkplan_d)(plnr, X(mkproblem_rdft2_d)( X(tensor_copy)(p->sz), X(mktensor_1d)(vl % nbuf, ivs, ovs), p->r0 + od, p->r1 + od, p->cr + id, p->ci + id, p->kind)); if (!cldrest) goto nada; pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); } pln->cld = cld; pln->cldrest = cldrest; pln->n = n; pln->vl = vl; pln->ivs = ivs; pln->ovs = ovs; X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs); pln->nbuf = nbuf; pln->bufdist = bufdist; X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops, &pln->super.super.ops); pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl; return &(pln->super.super); nada: X(ifree0)(bufs); X(plan_destroy_internal)(cldrest); X(plan_destroy_internal)(cld); return (plan *) 0; } static solver *mksolver(void) { static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(rdft2_rdft_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }