
Modeling ToolKit++ (MTK++)

v0.2.0

April 2010

Last revised, March 2011

M
TK++

1

M
TK++

1 Introduction 7

2 Design 7
2.1 Library Hierarchy . 7
2.2 Molecule Library . 7
2.3 Graph Library . 13

2.3.1 Graph Theory . 13
2.3.2 Library Design . 15

2.4 MM Library . 17
2.4.1 Background . 17
2.4.2 Library Design . 17

2.5 Parsers Library . 17

3 Atom Type and Bond Perception 18

4 Ring Perception 22

5 Addition of Hydrogen Atoms to Molecules 24

6 Conformational Sampling 28

7 Substructure Searching/ Functionalize 31

8 Clique Detection/ Maximum Common Pharmacophore 33

9 Superimposition 37

10 Metalloproteins 38

11 Metal Center Perception 44

12 Metal Center Parameter Builder 47
12.1 Equilibrium Bond Lengths and Angles . 48
12.2 Force Constants . 49
12.3 Point Charges . 50

13 Development History 51

14 Tests 56
14.1 File Formats . 56
14.2 Hybridize . 57
14.3 Linear Algebra . 57

MTK++ v 0.2.0 2 of 108

M
TK++

14.4 Molecular Mechanics . 57
14.5 Ring . 57

15 Examples 59
15.1 Active Site Capping (capActiveSite) . 59
15.2 File Conversion (frcmod2xml, prep2xml) . 61
15.3 Hybridize . 63
15.4 Functionalize (func) . 64
15.5 MM Energy . 66
15.6 Protonate . 69
15.7 Sequence Alignment . 70
15.8 Superimposer . 75
15.9 pdbSearcher . 77
15.10MCPB . 81

15.10.1 Schematic Generation . 81
15.10.2 Source PDB File . 81
15.10.3Generate the MCPB scripts . 82
15.10.4 Settings file . 82
15.10.5 Structural Preparation . 83
15.10.6 Side Chain Model . 83
15.10.7 Standard Molecule . 87
15.10.8 Side Chain Model Optimization/Frequency Calculation 87
15.10.9 Large Model . 87
15.10.10Large Model Charge Calculation . 92
15.10.11RESP . 92
15.10.12Create XML Libraries . 92
15.10.13Create FF Modification Files . 92
15.10.14Create AMBER prep and frcmod Files . 92
15.10.15Control Script Syntax . 93

List of Tables

1 Disulfide Bond Prediction Parameters. 11
2 Correspondence between Graph Theory and Chemical Terminology. 15
3 Meng Atomic Covalent Radii. 20
4 Labute Algorithm Upper Bound Bond Conditions. 20
5 Labute Algorithm Atom Hybridization Assignment. 21
6 Labute Algorithm Lower Bound Single Bond Lengths. 21
7 Labute Algorithm Bond Weights. 22
8 Hydrogen Bond Lengths. 28
9 Hydrogen Bond Angles. 28

MTK++ v 0.2.0 3 of 108

M
TK++

10 Hydrogen Bond Dihedrals. 29
11 Dihedral Angles Available based on Bond Type. 29
12 Metal Ions in the Protein Data Bank. 40
13 Published Metalloprotein Force Fields Using the Bonded Plus Electrostatics Model. 44
14 Metal-Donor Bond Target Lengths. 45
15 Ideal Angles Used to Calculate Root Mean Square Deviations for Tetrahedral, Square

Planar, Trigonal Bipyramidal, Square Pyramid and Octahedral
Geometries. 47

16 Hybridize Ligand Data Set. 58

List of Figures

1 Library Hierarchy as Implemented in MTK++. 8
2 Core Class hierarchy of the Molecule Library as implemented in MTK++. 9
3 Class Hierarchy of the Parameters Component of the Molecule Class as

Implemented in MTK++. 9
4 Class Hierarchy of the Standard Library Component of the Molecule Class as

Implemented in MTK++. 10
5 Disulfide Bond in Proteins. 10
6 The Structural Types of the Histidine Residue. 11
7 Class Hierarchy of the Molecule Component of the Molecule Class as Implemented

in MTK++. 13
8 Graph Theory I. 14
9 Graph Theory II. 16
10 Class Hierarchy of the Graph Library as Implemented in MTK++. 16
11 Class Hierarchy of the MM library as Implemented in MTK++. 18
12 Class Hierarchy of the Parsers Library as Implemented in MTK++. 19
13 Hybridization, Bond Order, and Formal Charge Perception Using the Labute Algo-

rithm. 23
14 Ring Perception. 25
15 Ring Perception Contd. 26
16 Aromatic, Non-aromatic, and Anti-aromatic Rings. 27
17 Hydrogen Bond. 28
18 Rotatable Bond Types. 30
19 Systematic Conformational Searching. 30
20 Conformer Generation. 30
21 Ullman Subgraph Isomorphism Illustration. 32
22 Clique Detection Illustration. 35
23 Molecular Superposition. 37
24 Most Common Amino Acid Residues which Bond to Metal Ions. 39
25 Zinc Metalloproteins. 40

MTK++ v 0.2.0 4 of 108

M
TK++

26 Copper Metalloproteins. 41
27 Homo-Nuclear Metalloproteins. 41
28 Hetero-Nuclear Metalloproteins. 42
29 Approaches to Incorporate Metal Atoms into Molecular Mechanics Force Fields. . . 43
30 Metal Ligand Geometries Perceived Using Harding’s Rules. 46
31 MCPB Flow Diagram. 48
32 Active Site Capping. 60
33 Ligand Hybridization. 64
34 GGMGG Pentapeptide. 67
35 Hydrogen Atom Addition. 70
36 Structural Alignment and Superimposition. 74
37 Ligand Atom Type Based Superimposition. 77
38 Metal Environment Perception. 79
39 1AMP schematic. 82
40 1AMP MCPB Models. 84

MTK++ v 0.2.0 5 of 108

Authors

Martin B. Peters (martin.b.peters@gmail.com)
Kenneth Ayers
Andrew Wollacott
Duane E. Williams
Benjamin P. Roberts
Kenneth M. Merz Jr. (merz@qtp.ufl.edu)

Contributors

Yue Yang
Daniel Sindhikara
Mark Benson
Roger Martin
Jianzhong Liu
Xiaohua Zhang
Lance Westerhoff

Acknowledgments

The authors would like to thank the NIH and NSF for funding this software development.

6

M
TK++

1 Introduction

Here we outline the design and development of a C++ package called Modeling ToolKit++
(MTK++). MTK++ was designed from the ground up to be used in areas of metalloprotein
modelling and in silico Structure Based Drug Design (SBDD).

This package contains functions to handle molecular structures ranging from proteins to small
molecules, that may be utilized to calculate molecular mechanics energies and gradients, to per-
ceive atom hybridizations, and evaluate bond orders, formal charges, rings and functional groups.
Utilities to add Hydrogen atoms to structures have been developed; this code was created to deal
with metalloprotein systems where no other software could satisfactorily do so.

MTK++ also has the capability to perform conformational searching of drug molecules using
a systematic approach where the molecular mechanics code was a prerequisite. Also an algorithm
to perform clique detection of molecular features was implemented to superimpose two molecu-
lar species on to one another for use in ligand and receptor based drug design. Additionally,
the MTK++ package contains other general purpose libraries for parameter optimization, graph
utilities, and statistical methods.

2 Design

MTK++ is an object oriented C++ package of molecular modeling libraries including Molecular
Mechanics (MM), Genetic Algorithm (GA), file processing and conversion (Parsers), statistical and
molecular tools to be used in SBDD and other computational chemistry fields. The Basic Linear
Algebra Subprograms (BLAS), Linear Algebra PACKage (LAPACK), Boost, and eigen3 were used
in the development. XML parsing libraries tinyxml, xerces-c [1], and Qt can be used.

2.1 Library Hierarchy

Figure 1 shows the hierarchy of the MTK++ package. At the center of the package of libraries is
a group of utility routines which are used in all other packages. These include constants definition,
diagonalization functions, an indexing class for easy sorting of objects, and a class called vector3d
for atomic coordinate storage and transformation. The Parsers library takes care of reading and
writing of files and it requires the Molecule and GA Libraries. Also the Molecule library uses
the Graph library for ring perception and other recursive functions. The design of the individual
libraries is discussed further in the sections below.

2.2 Molecule Library

The core of the MTK++ package is the Molecule library and its most important classes are shown
in Fig. 2. This library can handle multiple molecules at a time and these are stored in the
collection class. The collection class also takes care of all the elements (this information only
needs to be stored once, not for every molecule), and parameter and fragment information for MM
calculations. The molecules themselves are of type “molecule” and this class stores submolecule or
residue information. This division is analogous to that of amino acids in protein or nucleotides in

MTK++ v 0.2.0 7 of 108

M
TK++

GA

Molecule

Graph

Parsers Utils

Statistics

MM

Minimizers

Figure 1: Library Hierarchy as Implemented in MTK++. The Library where the tail of the arrow
starts uses the library where the head of the arrow ends, e.g. The Parsers library uses the Molecule,
Utils, Statistics, and GA Libraries.

DNA or in fact fragments in small organic molecule. The submolecule class stores a list of atoms
and the atom class stores pointers to objects such as its element and coordinates which are a vector
of three double precision numbers (vector3d).

The parameters class stores information for MM calculations as structures, such as atom types,
bond, angle, torsion, improper (force constants, equilibrium values) and non-bonded (charges,
Lennard-Jones values) parameters as shown in Fig. 3. The stdLibrary class is the main object
which deals with the storage and function of a molecular fragment library as shown in Fig. 4.
stdLibrary stores a list of stdGroups and a stdGroup is a storage container for stdFrag’s. For
example a stdGroup could store the 20 amino acids, each a stdFrag, of proteins or a list of functional
groups in drug design. The stdFrag class contains information about it atoms, stdAtom, bonds,
stdBonds, features, stdFeature, etc.

The functionality available to molecules such as proteins, DNA, and small organics originate
from the molecule class in the Molecule library as shown in Fig. 7. molecule stores a lists of
bonds, (a vector of Bond objects in C++), angles, torsions, and impropers. The connectivity
information is determined in the connections class. This class can perceive bonds using distance
and other geometric information, and also determine bonds through user defined databases of
molecular structures. For example the connectivity of an alanine residue in a protein doesn’t
need to be perceived since it is known a priori if the names of the atoms are known. Disulfide
bonds between Cysteine residues, as shown in Fig. 5, of proteins are automatically perceived using

MTK++ v 0.2.0 8 of 108

M
TK++

collection

metalCenter parametersstdLibrary

elementsmoleculedisulfide

submolecule

atom

vector3d element

Figure 2: Core Class Hierarchy of the Molecule Library as Implemented in MTK++. Solid line
boxes denotes a class, while a dashed box signifies a structure. A class where the tail of the arrow
starts uses or contains a class or structure where the head of the arrow ends. e.g. The elements
class contains or uses the element structure.

parametersatomType bondParam

angParam torParam impParam LJ612Param eqAtoms

Figure 3: Class Hierarchy of the Parameters Component of the Molecule Class as Implemented in
MTK++. Solid line boxes denotes a class, while a dashed box signifies a structure. A class where
the tail of the arrow starts uses or contains a class or structure where the head of the arrow ends.
e.g. The parameters class contains or uses the atomType structure.

MTK++ v 0.2.0 9 of 108

M
TK++

stdLibrary

stdGroup

stdFragstdAtom stdBond

stdLoop stdImproper stdAlias stdFeature stdRing

Figure 4: Class Hierarchy of the Standard Library Component of the Molecule Class as Implemented
in MTK++. Solid line boxes denotes a class, while a dashed box signifies a structure. A class where
the tail of the arrow starts uses or contains a class or structure where the head of the arrow ends.
e.g. The stdFrag class contains or uses the stdAtom structure.

the parameters in table 1 [2]. If the Cysteine’s SG atoms are within dCutoff of each other and
S − SEnergy from Eq. 1 is less than eCutoff they are considered bonded. The protonation states
of Histidine residues bound to a metal ion are also perceived using a bond distance cutoff of 2.3
Ångström. If the HIS@NE2 (epsilon nitrogen of Histidine) atom is within this cutoff the residue
is set to HID type. If the HIS@ND1 is within this cutoff the residue is set to HIE type. If both
HIS@NE2 and HIS@ND1 are bonded to a metal atom within 2.3 Å then the residue is set to HIN
type such as the bridging histidine residue in Copper-Zinc Superoxide Dismutase [3]. Bond order,
hybridization and formal charge of atoms for small molecule are determined in the hybridize class
which is discussed in more detail below in section 3.

SG1

SG2CB1
CB2

CYS
CYS

Figure 5: Disulfide Bond in Proteins.

S − SEnergy = EBond
SG1−SG2 + EAngle

CB1−SG1−SG2 + EAngle
CB2−SG2−SG1 (1)

where :

EBond
SG−SG = ssBondKeq ∗ (distanceSG−SG − ssBondReq)2 (2)

EAngle
CB−SG−SG = CBSGSGKeq ∗ (angleCB−SG−SG − CBSGSGReq)2 (3)

MTK++ v 0.2.0 10 of 108

M
TK++

Table 1: Disulfide Bond Prediction Parameters.
Parameter Value

dCutoff 2.5
ssBondReq 2.038
ssBondKeq 166.0
CBSGSGReq 103.7
CBSGSGKeq 68.0
eCutoff 30.0

HN N

CB

(a) HIN

N NH

CB

(b) HID

N N

CB

(c) HIE

HN NH

CB

(d) HIP

Figure 6: The Structural Types of the Histidine Residue.

Ring moieties are perceived within the rings class and each ring found is stored in a ring struc-
ture. The perception of rings is discussed further in section 4. The functionalize class determines
which functional groups are present in a molecule using a predefined database of fragments. The
implementation details of the functionalize class is outlined in section 7.

The fingerprint class contains rudimentary functionality for molecular fingerprinting. A finger-
print is defined as information that describes a molecule in 1-D. The fingerprint in MTK++ is
represented as a vector of integers with the following form: “atom info, bond type, # of rings ring
info”. The number of atoms from Hydrogen through Iodine are stored in the first 52 positions,
another 52 positions store the number of each of the following bond types B-H, C-H, N-H, O-H,
S-H, B-C, B=C, B-O, B-N, B-O, B-F, B-S, B-Cl, B-Br, B-I, C-C, C=C, C%C, N-N, N=N, C-N,
C=N, C%N, N-O, N=0, N-P, N-Se, N=Se, O-O, C-O, C=O, O-Si, O-S, O=S, O-Se, O=Se, C-F,
S-S, C-S, C=S, S-N, C-Cl, P-P, P-C, P-O, P=O, P-S, P-Se, Se-Se, C-Se, C=Se, N-Se, where “-”,
“=”, “%” denote a single, double and triple bond respectively. Finally the 105th position stores the
number of rings in the molecule or fragment. The size, planarity, aromaticity, heterocyclic boolean,

MTK++ v 0.2.0 11 of 108

M
TK++

and the number of nitrogens, oxygens and sulfur atoms of each ring is also stored after the 105th

position. Thus the length of the vector depends on the number of rings present in the molecule
or fragment. Fingerprinting in MTK++ is primarily used in conjunction with the functionalize
class. Fingerprints are used to screen out fragments that could not be apart of a molecule based
on elements, bond types, and rings present, thus speeding up the functionalization of molecules.

A pharmacophore is commonly defined as the three dimensional geometric arrangement of
molecular features that are necessary for biological activity. Pharmacophores between two molecules
are detected using a feature (H-bond Donor/Acceptor, Pi Center, Positive/Negative Center, Hy-
drophobicity) matching algorithm in the pharmacophore class. The features common to both
molecules are stored in a clique structure. A full description of the algorithm implemented in
MTK++ is outlined in section 8.

The protonate class carries out the addition of Hydrogen atoms to macromolecules (proProto-
nate), ligands (ligProtonate), and water (watProtonate) molecules. proProtonate uses information
from user defined libraries to add Hydrogens while ligProtonate is used when no such library is
available. Water molecules often surround structures derived from X-ray crystallographic data but
no Hydrogen atom positions are provided. Hydrogens are added separately to water molecules
after they are added to macromolecules and ligands. The algorithmic details of the three protonate
classes are described in section 5.

Conformational searching of drug-like molecules is carried out in the conformer class using graph
theory methods. Each conformer of a molecule is stored in a conformer structure. The internal
workings of this class are described in section 6. A integral part of conformational searching is
determine the amount of conformational space sampled. To determine this requires being able
to superimpose a conformer onto some reference structure and calculate the root-mean-squared
deviation. The superimposition of two molecules is carried out in the superimpose class and is
discussed below in section 9.

The selection class is used to parse strings that represent subsets of molecular data and is
essential in providing an API for users of MTK++. The data structure in the Molecule library
has a hierarchical definition. Atom information is stored in submolecule; bonds, angles, torsions,
impropers, and submolecules are stored in molecule and finally all molecules are stored in collec-
tion. The atom class is at the bottom of the hierarchy, while collection is at the top. Thus to
retrieve for example all atoms which a specific name in all molecules of the collection would require
a certain syntax. The syntax used in the selection class resembles that of a UNIX operating sys-
tem such as “/collection/molecule/submolecule/atom” For example, providing the following string:
“/COL/MOL/ALA-10/.CA.” would select the atom “.CA.”, alpha carbon, in alanine with residue
number 10 (ALA-10) and that’s part of the molecule named MOL in the COL collection. The
“/” on the left hand side of the string assumes that the selection is starting from the top of the
structural hierarchy. The following selection string does not begin with a slash: “ALA-10/.CA.”
and represents parsing the hierarchy from the bottom up; all alpha carbons of molecules in the col-
lection with alanine at position 10 will be selected. This syntax can handle molecule/ submolecule/
atom names, numbers, or a combination (name-number), such as ALA-10.

The atomTyper class assigns molecular mechanics atom types to the atoms of a molecule using
user defined fragment libraries. The hydrophobic regions of molecules is determined using an atom

MTK++ v 0.2.0 12 of 108

M
TK++

additive approach as outlined by Wang and Zhou in 1998 [4].

Bond Angle Torsion Improper

fingerprint

hybridize

connections

selection

rings

ring

moleculesuperimpose

atomTyper

functionalize

protonate conformers

pharmacophore

stdLibrary
pro lig wat conformer clique

Figure 7: Class Hierarchy of the Molecule Component of the Molecule Class as Implemented in
MTK++. Solid line boxes denotes a class, while a dashed box signifies a
structure. A class where the tail of the arrow starts uses or contains a class or structure where the
head of the arrow ends. e.g. The molecule class contains or uses the hybridize class.

2.3 Graph Library

2.3.1 Graph Theory

Many problems in cheminformatics such as finding the shortest path from one atom to another,
ring and substructure searching are solved using graph theory and recursive algorithms [5]. Graph
theory is a well establish area and is commonly used in computer networking [6]. A graph G consists
of a set of n vertices, V , and a set of m edges, E, where an edge is an unordered pair of vertices.
V = {v1, v2, v3, v4, v5, ..., vn}, E = {e12, e23, e34, e37, ..., em}, and G = {V,E}. The order and size
of a graph is the number of vertices, n, and the number of edges, m, respectively. The degree of a
vertex v of G is the number of edges incident upon v. Connected graphs contain a route from every
vertex to every other. Multigraphs (multiple bond containing molecules) are graphs which contain
repeated edges between vertices while a simple graph does not contain any. A directed graph, or
digraph, is a graph with directions assigned to each edge. Complete graphs are denoted by Kn and
are graphs where an edge connects every pair of vertices. A labeled graph is one where the vertices

MTK++ v 0.2.0 13 of 108

M
TK++

v1
v2

v3
v4

v5
v6

v7

v9 v8

e12

e78

(a) Sample Graph

C
C

C
C

C
C

N

C C

(b) Molecular Graph

Figure 8: Graphs to Link the Terminology used in Graph Theory and Chemistry.

and/ or edges are given labels. A weighted graph is a type of labeled graph where the labels are
real numbers.

A walk in G is a sequence of vertices w = [v1, v2, ...vk], k ≥ 1, such that [vj , vj+1] ∈ E for
j = 1, ..., k − 1. The walk is closed if k > 1 and vk = v1, and open if they are different. A walk is
called a path if there are no repeated vertices. A closed walk with no repeated vertices other than
its first and last one is called a cycle. The length l of a walk is the number of edges it contains
(open walks: l = s − 1, closed walks: l = s, where s is the number of vertices visited). The terms
path and chain describe an open walk and a walk in which all vertices (and edges) are distinct,
respectively. Cycles and paths of size n are denoted by Cn and Pn, respectively. A block is a group
of vertices such that all edges between them are involved in one or more cycles. An open acyclic
vertex is a vertex that is not located between two blocks while a closed acyclic vertex is located
between two blocks.

The graph in Fig. 8(a) contains a cycle, R = {RV , RE} where RV = {v7, v8, v9} and RE =
{e78, e89, e97}, of type C3. R is a subgraph of G where the vertices and edges of R are subsets
of G or in other words R is isomorphic to a subgraph of G. Reversely, G is a supergraph of R.
The determination if the graph G1 is isomorphic to a subgraph of G2 is a known as the subgraph
isomorphism problem which is NP-complete (Non-deterministic Polynomial time). The term clique
is used for a set of vertices where an edge exists between each pair. A clique is a subgraph of G
and itself is a complete graph. A k-clique is a clique of order k. Clique detection or maximum
common subgraph isomorphism is a method to find the largest subgraph of G1 isomorphic to a
subgraph of G2. The subgraph isomorphism and maximum subgraph isomorphism problems are
known in cheminformatics as substructure searching and pharmacophore mapping. A molecule can
be represented as a graph where the atoms are the vertices and bonds are the edges as in Fig. 8(b).
This is a labeled or colored graph, in other words each vertex is labeled with the element type and
each edge is colored with the bond order. The similarity between the two structures (graph and
molecule) can be seen in Figures 8(a) and 8(b). A dictionary of terms is compiled in Table 2.

A tree, T = (TV , TE), is a connected acyclic graph. Trees contain leaves which are vertices of
degree 1 and non-leaf vertices. A root is a vertex where all edges point away from it. A forest is a
set of disjoint trees while a “k-ary tree is a rooted tree in which every vertex has k children”. Trees
are often used in conformational searching and other combinatorial problems.

A matching or edge independent set, M , of G is a subset of the edges, such that no two edges

MTK++ v 0.2.0 14 of 108

M
TK++

Table 2: Correspondence between Graph Theory and Chemical Terminology.
Graph Theory Chemistry

Connected Graph Molecule
Graph Order Number of Atoms
Graph size Number of bonds
Vertex Degree Number of bonded atoms
Leaf Vertex Terminal atom
Closed path/ Cycle Ring
Cycle Type Ring Size
Chain Chain
Block Cluster of Rings
Subgraph Isomorphism Problem Substructure Searching
Maximum Common Subgraph Isomorphism pharmacophore mapping

in E shares a vertex. There are three types of matching called maximum, maximal, and perfect. A
maximum matching is a matching of highest cardinality. Maximal matching is a matching where no
other edges can be added, while a perfect matching contains all vertices of the graph. A matching
is maximum if and only if it has no augmenting path. An augmenting path is an alternating
path which starts and ends with free or unmatched vertices. An alternating path describes a
matching where the edges are alternately in M and not in M . For molecular graphs the maximum
weighted matching algorithm is a technique of assigning double and triple bonds and corresponds
to maximizing the number of double bonds in a pi system [7].

There are various ways of traversing or searching a graph. One such technique is the depth-first
search. This is implemented as a recursive routine and tracks which vertex and edge are encountered
thus only visiting each once.

2.3.2 Library Design

The graph library contains classes as shown in Fig. 10 to handle molecular graphs. This library
is used to find rings and to determine whether graphs are isomorphic. Also it is used to traverse
the torsional tree for systematic conformational searching. Tree and graph traversal is carried out
using the depth-first search algorithm. The graph class stores both vertices and edges with the edge
struct storing pointers to two vertex objects. Both vertices and edges store a boolean to describe
whether each has been visited during a traversal and a numerical variable to describe its color or
label. The vertex class also stores a list of its neighbors and which layer it is placed on.

MTK++ v 0.2.0 15 of 108

M
TK++

(a) Molecular Graph

v6

v7
v8

v9

v10

v5

v2

v1 v3
v4

(b) Graph

v6

v7
v8

v9

v10

v5

v2

v1 v3
v4

(c) Maximum Matching

v6

v7
v8

v9

v10

v5

v2

v1 v3
v4

(d) Maximal Matching

(e) Kekule Structures of Ben-
zene

Figure 9: Graphs to Link the Terminology used in Graph Theory and Chemistry.

vertex

graph

edge

Figure 10: Class Hierarchy of the Graph Library as Implemented in MTK++. Solid line boxes
denotes a class, while a dashed box signifies a structure. A class where the tail of the arrow starts
uses or contains a class or structure where the head of the arrow ends. e.g. The graph class contains
or uses the edge structure.

MTK++ v 0.2.0 16 of 108

M
TK++

2.4 MM Library

2.4.1 Background

Molecular Mechanics (MM) force fields such as AMBER [8, 9, 10, 11], CHARMM [12], MMFF
[13, 14, 15, 16, 17, 18, 19, 20], OPLS [21], and MM3 [22] can be used to calculate the enthalpic
component of the binding free energy between the receptor and ligand.

The AMBER energy function, Eq. 4, contains bond, angle, dihedral, and non-bonded terms.
The bond and angle terms are represented by harmonic expressions. The van der Waals term is
a 6-12 potential, and the electrostatic is expressed as a Coulombic interaction with atom centered
point charges.

Etotal =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2 +

∑

dihedrals

Vn

2
[1 + cos(nφ− γ)] +

∑

i<j

[

Aij

r12ij
− Bij

r6ij
+

qiqj
εrij

]

(4)

where Kr(kcal/molÅ2), and Kθ(kcal/(mol Radian2)) are the force constants for bond length and
angle, respectively, while req and θeq are the equilibrium bond distances and angles.

A truncated Fourier series represents the dihedral term, where Vn is the barrier height, n is the
periodicity, φ is the calculated dihedral angle and γ is the phase difference.

The fourth term describes the steric interaction as a Lennard-Jones potential, where rij is the
distance between atoms i and j. Aij = εijr

∗12
ij and Bij = 2εijr

∗6
ij are parameters that define the

shape of the potential where r∗ij = r∗i + r∗j in Å, r∗i is the van der Waals radius for atom i, and
εij =

√
εi ∗ εj , εi is the van der Waals well depth in kcal/mol and q are the atom-centered point

charges.

2.4.2 Library Design

The MM library contains classes and functions to carry out Molecular Mechanics minimizations as
shown in Fig. 11. Currently, the AMBER function is used. The amber class contains the driver
functions for the lower level classes ambBond, ambAngle, ambTorsion, and ambNonBonded that
contain the AMBER energy/gradient functions. The mmPotential class is the controller for all
MM functions which could be developed. It performs all the memory allocation/deallocation. The
MTK++ was designed as to easily allow the extension of its features. For example, cross terms
such as bond-stretch and non-harmonic terms such as the Morse potential for bonded atoms are
now possible within the MM library.

2.5 Parsers Library

The Parsers library contains classes to read and write molecular file types. XYZ, MOL, MOL2,
PDB, SD, and ZMAT file formats are supported. All classes inherit baseParser as shown in Fig.

MTK++ v 0.2.0 17 of 108

M
TK++

mmPotential

amber

ambBond ambAngle ambTorsion ambNonBonded

Figure 11: Class Hierarchy of the MM library as Implemented in MTK++. Solid line boxes denotes
a class and a class where the tail of the arrow starts uses or contains a class where the head of the
arrow ends. e.g. The amber class contains or uses the ambBond class. The orange arrow is used
to represent a public inheritance relationship between classes, i.e. amber is of type mmPotential.

12. baseParser controls the error handling of all classes in a uniform way. The xml file parsers
also inherit xmlConvertors and domErrorHandler from the xerces-c library which deal with errors
in the xml files. Input and output files of programs such as DivCon and Gaussian (both cartesian
and internal coordinates) are handled. The element parser reads the elements.xml file stored in the
MTK++ distribution and populates the elements object which the collection class stores. For each
atom in the periodic table the following information is stored: atomic number, mass, group, period,
valence, full shell size, covalent radius, van der Waals radius, Pauling’s electronegativity value, and
which semiempirical Hamiltonians are available to a given atom. The stdLib parser handles the
library xml files described in the previous section and populates the stdLibrary and stdGroup
classes. The param parser handles the parameter files associated with the fragment library such as
parm94 and GAFF from AMBER. The GA parser handles the files associated with the GA library
of MTK++. The amber parser can export and import AMBER topology and coordinate files.

3 Atom Type and Bond Perception

It is often the case in SBDD that the design process starts with an x-ray crystal structure of a target
molecule in complex with some bound substrate. This poses the challenge of determining atomic
hybridizations, formal charges and bond orders of the small molecule due to the fact that there are
no Hydrogen atoms present. Numerous algorithms have been published [23, 24, 25, 26, 27] but the
algorithm by Labute in 2005 [7] to perceive atom hybridizations, bond orders and formal charges
of drug-like molecules was implemented in MTK++ as it was shown to be superior to the others.
Other methods to perceive atom types and bond information include antechamber by Wang et al.
[28]. The Labute algorithm takes ten steps to determine the atom hybridizations, formal charges,
and bond orders. A ligand that binds to PPARγ (PDB: 1FM9) as shown in Fig. 13(a) is used to
illustrate the algorithm where x1, ..., xn denote the 3D coordinates of n atoms with atomic number
Z1, ..., Zn, and the number of bonded atoms for each atom is Qi and rij = |xi − xj| is the distance

MTK++ v 0.2.0 18 of 108

M
TK++

DivCon gaussian sd xyz zmat

baseParser

pdb

amber

mol2

stats

element param mol stdLib ga

xmlConvertors/domErrorHandler

Figure 12: Class Hierarchy of the Parsers Library as Implemented in MTK++. Solid line boxes
denotes a class and a class where the tail of the arrow starts uses or contains a class where the
head of the arrow ends. e.g. The element class contains or uses the xmlConvertors class. The blue
arrow is used to represent a public
inheritance relationship between classes, i.e. pdb is of type baseParser.

between two atoms. Bonds are perceived by first producing a candidate list and then refining it
using geometry. Covalent radii, Ri, from Meng [23] shown in table 3 are used in Eq. 5 to determine
the candidate bond list. Then for each atom, i, a “dimension”, di, is assigned based on a principal
component analysis of the Gram Matrix, D, defined in Eq. 6 where i is the current atom index, k
is the number of bonded atoms and q̄ is the geometric center as shown in Eq. 7.

0.1 < rij < Ri +Rj + 0.4 (5)

D =
k
∑

i=0

(qi − q̄)(qi − q̄)T (6)

q̄ =
1

k

k
∑

i=0

qi (7)

di is set to k if k < 2 otherwise, di is the number of positive eigenvalues of D with square root
greater than 0.2. di will be 0 for isolated atoms, 1 for terminal and linear atoms with at least 2
bonds, 2 for planar atoms (e.g., sp2 or square planar), and 3 otherwise (e.g. tetrahedral or sp3d).
The di numerical values for 1FM9 are shown in Fig. 13(b). Following the assignment of di an upper
bound, Bi, for the number of bonds allowed by an atom is determined using di and Zi as shown in

MTK++ v 0.2.0 19 of 108

M
TK++

Table 3: Meng Atomic Covalent Radii.
Atom Radii Atom Radii Atom Radii Atom Radii

H 0.23 P 1.05 Ni 1.5 Nb 1.48
He 1.5 S 1.02 Cu 1.52 Mo 1.47
Li 0.68 Cl 0.99 Zn 1.45 Tc 1.35
Be 0.35 Ar 1.51 Ga 1.22 Ru 1.4
B 0.83 K 1.33 Ge 1.17 Rh 1.45
C 0.68 Ca 0.99 As 1.21 Pd 1.5
N 0.68 Sc 1.44 Se 1.22 Ag 1.59
O 0.68 Ti 1.47 Br 1.21 Cd 1.69
F 0.64 V 1.33 Kr 1.5 In 1.63
Ne 1.5 Cr 1.35 Rb 1.47 Sn 1.46
Na 0.97 Mn 1.35 Sr 1.12 Sb 1.46
Mg 1.1 Fe 1.34 Y 1.78 Te 1.47
Al 1.35 Co 1.33 Zr 1.56 I 1.4
Si 1.2

Table 4. Only the shortest Bi are retained. At this point all atom hybridizations and bond orders
are set to zero or undefined. The next phase assigns obvious hybridizations based on d, Z, and

Table 4: Labute Algorithm Upper Bound Bond Conditions.
Bi Condition

0 di = 0
1 Zi < 3(H,He)
2 di = 1, Zi > 2 (sp hybridized and linear)
3 di = 2, Zi < 11 (sp2 hybridized for 2nd row elements)
4 di = 2, Zi > 10 or di = 3, Zi < 11 (square planar or sp3 hybridized)
7 otherwise

Q. Each row of table 5 is carried out one at a time with each row only being applied to atoms
with unassigned hybridization resulting in Fig. 13(c). Only atoms with unassigned hybridizations
have d < 3, Z = (C,N,O,Si,P,S,Se), Q < 4 and at least one bonded neighbor with an unassigned
hybridization. At this stage all bond orders, bij in which atom i or j has non-zero hybridization
are set to 1.

A dihedral test is used to identify bonds of order 1. The smallest out-of-plane dihedral is
computed using: minj,k |Pijkl|, |π − Pijkl|, | − π − Pijkl|. If this dihedral is greater than 15◦ then bij
is set to 1. Results of this step are shown in Fig. 13(d).

The following table 6 of lower bound single bond lengths and |xi − xj| > Lij − 0.05, where Lij

is the reference bond length, are used to identify single bonds. The bonds identified using this step

MTK++ v 0.2.0 20 of 108

M
TK++

Table 5: Labute Algorithm Atom Hybridization Assignment.
hybridization Condition

sp3 Zi = 1, 2
sp3d Qi > 4, Zi = (Group 5) and Qi = 5, Zi = Group 4,5,6,7,8
sp3d2 Qi > 4, Zi = (Group 6) and Qi = 6, Zi = Group 4,5,6,7,8
sp3d3 Qi > 4, Zi = (Group 7) and Qi = 7, Zi = Group 4,5,6,7,8
sp3d2 Qi = 4, Zi > 10, di = 2
sp3d2 Zi = (Transition Metal)
sp3d2 Qi > 4, Zi > 10 and not Si, P, S, Se
sp3 Qi > 4, Zi > 10 and Si, P, S, Se
sp3 (Qi = 4) and (Qi = 3, di = 3)
sp3 Qi > 2, Zi = Group 6,7,8
sp3 Zi not (C,N,O,Si,P,S,Se)
sp3 All atoms where none of its bonded atoms have zero hybridization

are shown in Fig. 13(e)

Table 6: Labute Algorithm Lower Bound Single Bond Lengths.
bond dist bond dist

C-C 1.54 C-N 1.47
C-O 1.43 C-Si 1.86
C-P 1.85 C-S 1.75
C-Se 1.97 N-N 1.45
N-O 1.43 N-Si 1.75
N-P 1.68 N-S 1.76
N-Se 1.85 O-O 1.47
O-Si 1.63 O-P 1.57
O-S 1.57 O-Se 1.97
Si-Si 2.36 Si-P 2.26
Si-S 2.15 Si-Se 2.42
P-P 2.26 P-S 2.07
P-Se 2.27 S-S 2.05
S-Se 2.19 Se-Se 2.34

After steps 5 and 6 the hybridizations of all uncharacterized atoms not involved in a bond of
unknown order are set to sp3 as shown in Fig. 13(f).

A molecular graph is formed including only atoms (vertices) that have undefined hybridization
and bonds (edges) that have unknown order. This graph is then divided into components or
subgraphs. Each subgraph is analyzed independently and bond orders are assigned as shown in

MTK++ v 0.2.0 21 of 108

M
TK++

Fig. 13(g). Edge weights are assigned with the following equation wij = ui + uj + 2δ(rij <
Lij − 0.11) + δ(rij < Lij − 0.25) using the atom parameters, u, defined in Table 7 (3rd and 4th row
elements are mapped to the corresponding 2nd row with 0.1 been subtracted, -20.0 for all other
atoms). Results are shown in Fig. 13(h).

Table 7: Labute Algorithm Bond Weights.
atom Q=1 Q=2 Q=3

C-O 1.3 4.0 4.0
C-N -6.9 4.0 4.0
C 0.0 4.0 4.0
N-C-O -2.4 -0.8 -7.0
N-C-N -1.4 1.3 -3.0
N 1.2 1.2 0.0
O-C-O 4.2 -8.1 -20.0
O-C-O 4.2 -8.1 -20.0
O 0.2 -6.5 -20.0

A Maximum Weighted Matching Algorithm is employed to find the best arrangement of dou-
ble/triple bonds in each subgraph resulting in the pattern shown in Fig. 13(i). Ionization states
and formal charges are perceived from the connectivity and bond order. The formal charge of atom
i, fi, is calculated as follows: fi = ci − oi + bi, where: ci is the atom group in the periodic table, oi
is the nominal octet (2 for Hydrogen, 6 for Boron, 8 for Carbon and all other sp3 atoms in groups
5,6,7,8) and bi is the sum of the atom bond orders. The final stage of the algorithm determines
the correct bonding and charge state for the following functional groups: nitro, alphiatic amines,
carboxylic acids, sulfonic acids, phosphonic acids, amidines, guanidines, and sulfonamides.

4 Ring Perception

The algorithm used is in close agreement with that published by Fan, Panaye, Doucet, and Barbu
in 1993 [29]. The functions contained in rings determines the smallest set of smallest rings
(SSSR) from a molecule graph. The SSSR of a molecule is represented as S(m1,m2, ...) where
mi are the ring sizes. Take for example the following molecule shown in Fig. 14(a) with all
open acyclic nodes highlighted in Fig. 14(b) are removed resulting in the structure shown in Fig.
14(c). Then all closed acyclic nodes are removed as highlighted in figures 14(d) and 14(e). The
structure is then separated into blocks as shown in Fig. 14(f). The question then arises how
many rings are there in the current block as shown in Fig. 14(g)? Allowing the first node to
be the root node, numerous ring systems can be found including R1

V = {v1, v2, v3, v15, v13, v14},
R2

V = {v1, v2, v3, v15, v16, v10, v11, v12, v13, c14}, ..., Rn
V . The closed path found containing the root

node is recursively searched until it can not be reduced further, in other words R1
V is found as shown

in 15. Once an irreducible closed path is found all nodes with two links are removed. Nodes 2, 1,

MTK++ v 0.2.0 22 of 108

M
TK++

C

C

C

O

OC

C

C

C

C

C

OC

N

C

C
O

C

C
N

C

C

C C

N

C

C

C
C

C

C

C

O

C

C

C

C

C

C

(a) START

O

O

O

N
O

N

N

O

1

1

1

1

2

2

2

2

2

2

2

2 2

2

2

2

2 2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2
2

2

2

(b) Step 1

O

O

O

N
O

N

N

O

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0
0

0

0

0

(c) Step 3

O

O

O

N
O

N

N

O

(d) Step 5

O

O

O

N
O

N

N

O

(e) Step 6

O

O

O

N
O

N

N

O

sp3

sp3

sp3

sp3

sp3

sp3

sp3

sp3

sp3

sp3 sp3

sp3

sp3

(f) Step 7

O

O

N
O

N O

(g) Step 8a

O

O

N
O

N O

-1

5.2

3.2

10

10
10

10

10 -4.1

8 8

10

88

10

10.2

10.2

6.2

10

10

10
8

8

8

(h) Step 8b

O

O

N
O

N O

(i) Step 8c

O

O

O

N
O

N

HN

O

(j) END

Figure 13: Hybridization, Bond Order, and Formal Charge Perception Using the Labute Algorithm.

MTK++ v 0.2.0 23 of 108

M
TK++

and 14 are then removed. The algorithm then picks another root node and the next ring is found
until all rings are found. Once all rings are found in a molecule, an aromaticity test is applied. The
algorithm used is in close agreement with that published by Roos-Kozel, and Jorgensen in 1981 [30].
Rings are classified as aromatic (AR), antiaromatic (AA), or nonaromatic (NA). A ring is assigned
to be nonaromatic if it contains no intra-ring double bonds, contains a quaternary atom, contains
more than one saturated carbon, contains a monoradical, or contains a sulfoxide or sulfone. A ring
system is aromatic if and only if it contains 4n+2 (n=0,1,2,3,4,...) pi electrons (Hückel rule) and
is planar (10 ◦ tolerance). The number of pi electrons of a ring is determine using the following
rules: cationic carbon and boron contribute 0, saturated heteroatoms give 2, an anionic carbon has
2, and atoms on intra-ring pi bond contribute 1. If a rings contains exocyclic pi bond(s) (Carbon
double bonded to a heteroatom), then 1 pi electron is removed. Some rings correctly perceived by
this algorithm are shown in Fig. 16. All are perceived to be aromatric except for cyclooctatetraene
(COT). COT contains alternating single and double bonds but it is non-planar and is correctly
assigned to be antiaromatric.

The ring centroid, plane and normal are also calculated for uses in pharmacophore matching
and molecular alignment which will be discussed later in this chapter. The centroid is calculated
using Eq. 8 where k is the size of the ring and qi are the atomic coordinates. The ring plane
and normal are computed by carrying out the principal component analysis of the Gram matrix
as previously described in section 3. Matrix D is evaluated, Eq. 9, and then diagonalized with the
first two eigenvectors defining the ring plane and the third being the ring normal.

c =
1

k

k
∑

i=0

qi (8)

D =
k
∑

i=0

(qi − c)(qi − c)T (9)

5 Addition of Hydrogen Atoms to Molecules

The addition of Hydrogen atoms to proteins, DNA or water molecules is carried out using a prede-
fined library. Small molecules with known atom hybridization, ring information and bond orders
are dealt with using the following algorithm. First, Hydrogen atoms are added to polar (N, O, and
S) atoms, followed by ring systems, then terminal atoms. All other unprotonated atoms are dealt
with at the end. The number of Hydrogen atoms to add is defined by the current valence and the
ideal full shell value of the atom to which the Hydrogen will be added. The bond lengths used
are defined in Table 8. The only distinction of type of atom to which a Hydrogen is added is the
element type, in other words the bond distance for a Carbon sp3 or sp2 to Hydrogen is the same.
The angle to which a Hydrogen atom is added is defined either by the hybridization or type of the
connecting atom or the type of bond between the connecting atom and 1-3 atom as shown in Table
9. The dihedral angle to add a Hydrogen atom is the most complex component of this algorithm.

MTK++ v 0.2.0 24 of 108

M
TK++

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

(g) Step 7

Figure 14: Ring Perception.

MTK++ v 0.2.0 25 of 108

M
TK++

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

Figure 15: Ring Perception Step 8.

MTK++ v 0.2.0 26 of 108

M
TK++

(a) Benzene (AR) (b) Anthracene (AR)

H

(c) Cycloheptatriene (AR)

H

(d) Cyclopentadienyl Anion (AR)

N

(e) Pyridine (AR)

S

(f) Thiophene (AR)

N

N

(g) Pyrimidine (AR)

N

N N

N

(h) Purine (AR)

NH

H
N

O

S

(i) 2-thioxo-2,3-dihydropyrimidin-4-one (AR)

N
NH

S

(j) imidazo-pyridine-3-thione (AR)

(k) Cyclooctatetraene (AA)

Figure 16: Ring structure which are correctly assigned aromatic (AR), non-aromatic (NA) and
anti-aromatric (AA).

Suppose you want to add a proton, A, on to atom B which is bonded to atom C and is 1 − 3
bonded to atom D. First a list is compiled of all torsional angles XBCD already occupied, where
X is any heavy atom bonded to atom A. The dihedral then used is defined by the hybridization of
atom B and built using atoms BCD. If B is sp3 hybridized then a Hydrogen atom is placed 120◦

from other bonded atoms. Dihedral angles of 0◦ and 180◦ are used when B is sp2 and 180◦ for
sp hybridized. Aromatic rings are a special case of sp2 hybridized atoms where only a torsion of
180◦ is allowed. The dihedral values of polar Hydrogens are optimized to maximize intra-molecular
Hydrogen bonding using Eq. 10 where θD−H−A is the angle between the donor, Hydrogen and
acceptor atoms and rH−A is the Hydrogen-acceptor distance. If θD−A−AA or θD−H−A is greater

MTK++ v 0.2.0 27 of 108

M
TK++

than 90◦, or rD−A is less than 3.5Å then no Hydrogen bond is considered.

EHB = cos2 (θD−H−A) ∗ e(−(rH−A−2.0)2) (10)

D H

A AA

Figure 17: Hydrogen Bond.

Table 8: Hydrogen Bond Lengths.
atom Bond Length (Å)

C 1.09
N 1.008
O 0.95
S 1.008
Se 1.10
Default 1.05

Table 9: Hydrogen Bond Angles.
atom / Bond Angle (Degrees)

sp / triple 180.0
sp2 / double 120.0
sp3 / single 109.47
Aromatic Ring ((360 − ((ringSize − 2) ∗ 180)/ringSize)/2)
Default 109.47

6 Conformational Sampling

Conformational searching of drug-like molecules in MTK++ is carried out using a systematic
approach. GAFF [31] atom types are assigned to the atoms in a particular molecule using AN-
TECHAMBER and CM2 charges are generated using the DivCon program. The atomic hybridiza-
tions and bond orders defined in the hybridize class are used to mark which single or double bonds
are rotatable. If either of the atoms in a bond are described as terminal then the bond is removed

MTK++ v 0.2.0 28 of 108

M
TK++

Table 10: Hydrogen Bond Dihedrals.
atom Dihedral (Degrees)

sp 180.0
sp2 0.0, 180.0
sp3 120.0
Aromatic Ring 180.0

from the list of rotatable bonds. If both of the atoms are members of a ring then the bond is also
removed, thus removing ring flexibility. The incorporation of ring flexibility is planned in later
releases of the MTK++ code. Then for each rotatable bond that remains a torsion is sought after.
The total number of molecular conformations, Nconformers, is then defined by Eq. 11, where i is
a rotatable bond index, R is the range of the associated torsion (0 − 360◦), and δ is the rotation
increment (120◦ for sp2 − sp3). The increment currently used are tabulated in Table 11. Once the
number and location, as shown in Fig. 18, of each rotatable bond is determined a graph is formed
as described in Fig. 19 [32]. Each rotatable bond is defined as a layer with each unique torsional
value information contained in a vertex upon this layer. Graph edges are then defined between each
vertex of one layer to every vertex one layer below. Once formed the graph is traversed and the
AMBER energy, EMM , is calculated for each conformer. The lowest energy conformers are stored,
based on some user provided criteria, for later use.

Nconformers =
n
∏

i=1

Ri

δi
(11)

Table 11: Dihedral Angles Available based on Bond Type.
Bond Type Angles

sp3 − sp3 60, 180, 300
sp2 − sp2 0, 30, 150, 180, 210, 330
sp2 − sp3 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330

In Fig. 20(a) we have an organic molecule which binds to the Peroxisome Proliferator-Activated
Receptor γ. This is a functional group rich molecule containing phenyl rings, a carboxylate, a het-
erocycle (2,4,5-oxazole), a ketone, an amine, and an ether moiety. This structure has 12 rotatable
bonds as shown in Fig. 20(b). Using the torsion resolution definitions in table 11 would lead to
4,353,564,672 conformers! Even on modern computer hardware this number is too large. Taking a
closer look at this structure, Fig. 20(c), the symmetry of the functional groups becomes apparent.
For example, the carboxylate group, shown in green, is C2 symmetric since the negative charge is

MTK++ v 0.2.0 29 of 108

M
TK++

O

O

sp3

sp3

sp2

sp2

Figure 18: Rotatable Bond Types.

60

Torsion 1: sp3 − sp3

180

0 30 60 90 120 150

0

Torsion 3: sp2 − sp2

30 150 180 210 330

180 210 240 270 300 330

Torsion 2: sp3 − sp2

300

Figure 19: Systematic Conformational Searching. Torsion 1 forms the first layer containing three
values or vertices. Followed by layer containing 12 vertices and finally the third layer with six
vertices. This graph would result in 216 conformers been formed.

O

O

O
HN

O

O

N

(a) PPARγ Agonist

O

O

O
HN

O

O

N
1 2 3

4
5

6 7
8

9

10

1112

(b) Number of Rotatable Bonds

O

O

O
HN

O

O

N

(c) Symmetric Regions

O

O

O
HN

O

O

N 1 2

3 4

5

6

7

8

(d) Reduced number of Rotatable Bonds

Figure 20: Conformer Generation.

MTK++ v 0.2.0 30 of 108

M
TK++

not solely placed on one of the oxygen atoms and the phenyl group shown in yellow is also symmet-
ric. Removing these symmetric torsions from the total number results in 544,195,584 conformers.
Chemical knowledge of the torsional profile between the phenyl and oxazole groups enclosed in the
red oval suggests even fewer available torsions due to conjugation. Thus reducing the total number
of discrete conformers to 181,398,528. MTK++ attempts to reduce this number even further by
recognizing “privileged fragments” with known torsion profiles. The tyrosine-like group enclosed
in the blue oval is one such fragment and is stored in the “cores” library of the package. Removing
these rotatable bonds results in 419,904 conformers. In Fig. 20(d) highlights the rotatable bonds:
green represents unrestricted, blue are restricted by symmetry, while red bonds are frozen.

The systematic approach works extremely well for molecules with approx. 12 rotatable bond or
less. When the number of potential conformers exceeds two million the searching algorithm reverts
to using the GA library of MTK++. During a GA search of conformational space the user is
required to provide the maximum number of MM calculations which are allowed. Other searching
tools such as MD and MD-LES are recommended for large peptidic molecules that bind certain
proteins such HIV Protease and Endothiapepsin.

7 Substructure Searching/ Functionalize

To functionalize a molecule involves searching it for chemical substructures. Substructures search-
ing is known as the subgraph isomorphism problem of graph theory and belongs to the class of
NP-complete computational problems. Due to the NP-complete nature of substructure searching
usually a screen is carried out to eliminate subgraphs that cannot be contained in the molecule.
The fingerprint class in the molecule library carries out this screening process between fragments
and a molecule.

The brute-force algorithm for subgraph isomorphism begins by generating the adjacency ma-
trices A and B for the fragment and the molecule containing PA and PB atoms respectively. Then
an exhaustive search involves generating PB !/[PA!(PB −PA)!] combinations of PA and determining
whether any combinations are matches to a portion of the molecule. The algorithm used is in close
agreement with that published by Ullmann [33], and Willett, Wilson, and Reddaway [34]. Ullmann
first noticed that using a depth-first backtracking search dramatically increases efficiency, while
Willett used a labeled graph and a non-binary connection table to increase algorithm speed.

The functionality of finding substructures in molecules was developed to carry out functional
group alignment of drug-like molecules and to optimize fragment positions in drug-protein com-
plexes during the lead optimization stage of the drug design process.

The algorithmic details of the functionalize code are as follows (this example was adapted from
Molecular Modelling, Principles and Applications 2nd Edition by Andrew R. Leach [35]). Take for
example a fragment and molecule shown in Fig. 21(a) and 21(b). The corresponding adjacency
matrices are shown in Eq. 12 and 13. The Ullman algorithm tries to find the match between the
fragment and the molecules (Fig. 21(c)). Mathematically this is represented as the matrix A, Eq.
14, which satisfies A(AM)T as shown in Eq. 15.

MTK++ v 0.2.0 31 of 108

M
TK++

1

2

3

4

(a) Fragment Structure

1

2

3

4

5

6

(b) Molecule Structure

1

2

3

4

5

6

1

2

3

4

(c) Alignment

Figure 21: Ullman Subgraph Isomorphism Illustration.

F =

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

(12)

M =

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

(13)

A =

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

(14)

MTK++ v 0.2.0 32 of 108

M
TK++

A(AM)T =

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0 1 0 0
1 0 1 0
0 1 0 0
0 1 0 1
0 0 1 0
0 0 1 0

=

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= F (15)

This depth-first backtracking algorithm uses a General match matrix, M that contains all the
possible equivalences between atoms from A and B. The elements of this matrix, mij(1 ≤ i ≤
Pa; 1 ≤ j ≤ Pb) are such that:

mij =

{

1 if the ith atom of A can be mapped to the jth atom of B,
0 otherwise.

(16)

The Ullmann heuristic states that “if a fragment atom ai has a neighbor x, and a molecule
atom bj can be mapped to ai , then there must exist a neighbor of bj , y, that can be mapped to
x” and is mathematically written in Eq. 17.

mij = ∀ x(1...PA)[(aix = 1) ⇒ ∃ y(1...PB)(mxybjy = 1)] (17)

If at any state during the search an atom i in A such that mij = 0 for all atoms in B then a
mismatch is identified as defined in Eq. 18 and the match is discarded.

mismatch = ∃ i(1...PA)[(mij = 0 ∀ j(1...PB)] (18)

The complete algorithm to perceive the functional groups in a molecule in described using
pseudo code in Algorithm 1. The algorithm begins by reading user created fragment libraries and
molecules which are to be studied. Fingerprints of each fragment and molecule are then created.
For each molecule under consideration rings, atom hybridizations, bond orders and formal charges
are assigned using the algorithm previously described. If Hydrogens are not present on the molecule
then they are added using an algorithm described later in this chapter.

Then for each fragment store in memory its fingerprint is compared to that of the molecule.
If there is a fingerprint match then the Ullmann/Willett algorithm is invoked. If the subgraph
isomorphism algorithm results in a match then the fragment code is assigned to the molecule.

8 Clique Detection/ Maximum Common Pharmacophore

As outlined in Section 2.3.1 a 3D molecular clique is defined as a group of pharmacophore points
and the geometric distances between all points in that group. Fig. 22 illustrates the clique detection
algorithm implemented in MTK++ [36]. Take for example two estrogen receptor ligands (PDBID:
1ERR and 3ERT) and finding the pharmacophore points such as Hydrogen bond acceptor/donor,
positive/negative charge centers, hydrophobes, rings, and ring Normals as shown in Fig. 22(b)
certain molecular features can be mapped to one another, as shown in Fig. 22(c). The mapping,

MTK++ v 0.2.0 33 of 108

M
TK++

Algorithm 1: Functionalize Algorithm.

Data: Fragment Libraries and MDL Files
Result: Functional group assignment
begin

Read Fragment Libraries;
Read in molecules to functionalize;
Generate fingerprints for all fragments;
for i→ nMolecules do

Determine Rings;
Perceive Hybridizations, Bond Order, and Formal Charge;
Add Hydrogens;
Generate fingerprint;
for j → nFragments do

bool bMatch1 = Compare molecule to simple fingerprint (Screening);
if bMatch1 then

bool bMatch2 = Match fragment to molecule using the Ullmann and Willett
algorithm of subgraph isomorphism;
if bMatch2 then

assign fragment code to molecule;
end

end

end

end

end

Eq. 19, results in a valid clique because the inter point distances, Eq. 20, are compatible within
some tolerance. However, adding the mapping M = [F1 ↔ F2], does not result in a valid clique as
d1CF 6≈ d2CF . The clique detection algorithm thus requires a method of pruning a potentially large
set of mapping which is carried out by allowing each to be a seed and growing cliques using heuristic
criteria. Obviously certain seed mappings will lead to equivalent cliques however a diverse set are
often found. Cliques are then scored or ranked to determine the best overall matching using Eq.
21 where D are the inter-point distances and d1i is a distance between two features of molecule 1
and d2i is the distance between equivalent features in molecule 2. The function for the two mapping
A1 ↔ A2 and B1 ↔ B2 reaches a value of 1.0 when d1AB = d2AB . The parameter δdmax controls
how rapidly the match score drops off as the distances becomes less compatible.

P = [A1 ↔ A2, B1 ↔ B2, C1 ↔ C2,D1 ↔ D2, E1 ↔ E2] (19)

D =
[

d1AB ≈ d2AB , d
1
BC ≈ d2BC , d

1
CD ≈ d2CD, d

1
DE ≈ d2DE , . . .

]

(20)

Score =
D
∑

i

exp

−
(

d1i − d2i
∆dmax

)2

 (21)

MTK++ v 0.2.0 34 of 108

M
TK++

N

O

O

S OH

HO

N

O

HO

(a) Estrogen Ligands (PDB: 1ERR and 3ERT.)

N

O

O

S OH

HO

N

O

HO

(b) Chemical Features Highlighted

A2

B2

C2

D2

E2

A1

B1

C1

D1

E1

F2

F1

(c) Chemical Feature Mappings

Figure 22: Clique Detection Illustration.MTK++ v 0.2.0 35 of 108

M
TK++

Algorithm 2: Find Maximum Common Pharmacophore (MCP)

Data: Two Molecules
Result: Maximum Common Pharmacophore Between the Two Molecules
begin

Generate Feature Correspondence Matrix between the two molecules;
Get Threshold Feature Score, TFS;
bestClqScore = 0; bestClqSize = 0;
for i→ CorrespondenceMatrix do

getPair ←− 1; curClq ←− i; curClqScore←− 0;
while getPair do

getPair ←− 0; maxScore←− 0; pair ←− 0;
for j → CorrespondenceMatrix do

testScore←− 0;
for k → curClq do

jkScore = exp(−((dj − dk)/dm)2);
if jkScore > TFS then

testScore+ = jkScore
else

break;
end

end
if testScore > maxScore then

Pair ←− j;
maxScore←− testScore;

end
end
if Pair then

Add Pair to curClq;
curClqScore+= maxScore;
getPair ←− 1;

end
end
store←− 0;
if curClqScore > bestClqScore+ 0.1 then

store = 1;
end
if curClqScore > bestClqScore− 0.1 then

if curClqSize > bestSize then
store = 1;

end
if curClqSize == bestSize then

if curClqDist > bestDist+ 0.1 then
store = 1;

end
end

end
if store then

bestClqScore = curClqScore; bestClqSize = curClqSize;
bestClqDist = curClqDist; bestClq ←− curClq;

end
end
return bestClq

end

MTK++ v 0.2.0 36 of 108

M
TK++

9 Superimposition

Molecular superimposition is carried out using a rigid body least squares procedure from Kearsley
[37] and Kabsch [38, 39]. The rotation matrix to minimize the sum of the squared distances between
atoms of two molecules, Eq. 22 is solved using quaternions and eigen methods as described by
Kearsley in 1989.

F =
∑

i

|xi − x′i|2 (22)

A requirement of this procedure is that atom i in molecule A corresponds to atom i in molecule
B. For example if you wanted to measure the rmsd between two benzoic acid conformers as shown
in figures 23(a) and 23(b) would require a certain correspondence to remove artificial differences
attributed to automorphisms or self-symmetry. This is carried out by generating all matchings of
non-Hydrogen atoms by type or element kind and assigning the lowest rmsd as the true value [40].

O

O

1

2

3

4

8

5

6

79

(a) Conformer 1

O

O

3

2

1

4

6

9

8

75

(b) Conformer 2

Figure 23: Illustration of the requirement of atom correspondence for molecularsuperposition.

MTK++ v 0.2.0 37 of 108

M
TK++

10 Metalloproteins

Metalloproteins are a key subset of proteins in the body which bind a transition metal. The metal
ion acts as a Lewis acid (electron pair acceptor) towards amino acids or other molecules which are
Lewis bases (possess one or more lone pairs) and are called ligands. The bonding of ligands to a
metal ion is described as dative when the ligand donates one or more lone pairs to the metal. Metals
can be coordinated to any number of ligands with four, five and six being the most common in
biosystems. Thus the most likely geometries include tetrahedral, square planar, trigonal pyramidal,
and octahedral. The amino acids that most commonly bind to a metal ion in metalloproteins are
shown in Fig. 24. The side chain of each amino acid is labeled with greek letters and these are
used when referring to which atom of an amino acid bonds to the metal, e.g. Zn-CYS@SG would
translate that the gamma Sulfur of a cysteine residue is bound to a Zinc ion.

Iron, Copper, and Zinc are the most abundant transition metals in the human body. Metal
ions in biological systems have both structural and functional roles. They are termed structural
when no chemical reaction takes place at the metal site but aide in the stabilization of the protein
structure whereas functional metalloproteins carry out chemical reactions.

Zinc proteins are both structural and catalytic. Zinc acts as a superacid and promotes the
hydrolysis or cleavage of chemical bonds. For example, Human Carbonic Anhydrase II (HCA II),
catalyses the conversion of CO2 into bicarbonate or vice versa. HCA II contains a tetrahedral zinc
at its active site as shown in Fig. 25(a). The Zinc atom is bound to three histidine residues and a
water molecule (pH< 7) or a hydroxyl ion. Farnesyl Transferase (FTase) is a zinc metalloenzyme
that removes the diphosphate group from the farnesyl diphosphate substrate and connects the
resulting farnesyl moiety to the cysteine. The full active site of 1QBQ is shown in Fig. 25(b).
Other Zn metalloproteins include carboxypeptidase which cleaves the terminal carboxy group from
peptides and alcohol dehydrogenase which converts alcohol to acetaldehyde.

Metalloproteins that contain Copper are also both structural and functional. Copper can change
oxidation state and is often involved in electron-transfer reactions. Human Antioxidant protein
(HAH1) contains a tetrahedral Cu(I) bound by four cysteine residues as shown in Fig. 26(a).
HAH1 is involved in the transporting of Copper in the body and is labeled a chaperone. Amicyanin
is a tetrahedral Cu(II) containing protein which binds two histidines, a methionine, and a cysteine
residue as shown in Fig. 26(b). This protein is called a blue copper protein due to its spectroscopic
properties arising from cysteine to Cu(II) charge-transfer [41, 42, 43, 44, 45, 46].

Metalloproteins can also contain multiple metals in close proximity. For example, Aminopep-
tidase is a di-zinc protein from Aeromonas. proteolytica (AAP) which catalytically cleaves the
N-terminus of polypeptides. The active site of Aminopeptidase is shown in Fig. 27(a) where the
zinc ions are bound to histidine, aspartic acids and are bridged with a water molecule. Urease
from Bacillus pasteurii, is a di-nickel enzyme that catalyzes the hydrolysis of urea to ammonia
and carbon dioxide. Its active site is shown in Fig. 27(b), where two nonequivalent Ni(II) atoms
(3.5Å separation) are bound to two histidines each and a bridging carbamylated lysine. An aspar-
tate residue, two waters and a bridging water/hydroxyl ion complete the coordination sphere. The
geometry of both Ni centers can be described as square pyramidal and octahedral [47, 48, 49, 50].
Both Aminopeptidase and Urease are homo-nuclear proteins but hetero-nuclear metalloproteins

MTK++ v 0.2.0 38 of 108

M
TK++

N
O

SH

α

β

γ

(a) Cysteine (CYS)

N
O

S

α

β

γ

δ

(b) Methionine (MET)

N
Oα

β

γ

δ

δ

O

OH

(c) Aspartic Acid (ASP)

N
Oα

β
γ

ε ε

δ

OHO

(d) Glutamic Acid (GLU)

N
O

N

N

α

β

γ

δ
ε

ε

δ

(e) Histidine (HIS)

Figure 24: Most Common Amino Acid Residues which Bond to Metal Ions.

MTK++ v 0.2.0 39 of 108

M
TK++

(a) 1CA2 Active Site (b) 1QBQ Active Site

Figure 25: Zinc Metalloproteins. The Zinc ion is shown in purple while the Oxygen atom of the
water molecule in 1CA2 bound to Zinc is shown in red.

also exist. Copper-Zinc Superoxide Dismutase, Cu,Zn-SOD, is one such protein as shown in Fig.
28.

There are currently 52550 structures in the Protein Data Bank (PDB) [51] and searching for
“metal” results in over 18,000 hits with the break down shown in table 12. Metal ions play a vital
role in protein function, structure, and stability, with zinc, copper, and iron playing the biggest
role as described in Section 10.

Table 12: Metal Ions in the Protein Data Bank (Accessed on April 5th 2007).
Metal Hits Metal Hits Metal Hits

Na 2149 V 12 Pd 1
Mg 3467 Cr 7 Ag 9
K 632 Mn 984 Cd 361
Ca 3601 Fe 2022 Ir 6

Co 340 Pt 62
Ni 310 Au 28
Cu 589 Hg 323
Zn 3427

Total = 18330

It is desirable to model metalloprotein systems using MM models because one can carry out

MTK++ v 0.2.0 40 of 108

M
TK++

(a) 1FEE Active Site (b) 1AAC Active Site

Figure 26: Copper Metalloproteins. The Copper ion is shown in grey.

(a) 1AMP Active Site (b) 2UBP Active Site

Figure 27: Homo-Nuclear Metalloproteins. The Zinc and Nickel ions are shown in purple and grey
respectively, while Oxygen atoms of water molecules are shown in red.

MTK++ v 0.2.0 41 of 108

M
TK++

Figure 28: Hetero-Nuclear Metalloproteins. The Active Site of Copper-Zinc Superoxide Dismutase,
Cu,Zn-SOD, (PDB ID: 1CBJ) is shown. The Zinc and Copper ions are shown in purple and grey
respectively.

simulations to address important structure/function and dynamics questions that are not currently
attainable using QM and QM/MM based methods due to unavailability of parameters or system
size.

There are a number of approaches to incorporating metal ions into FFs. The Bonded Model
defines bonds, angles, and torsion’s between the metal ion and its ligand which are added to the FF
plus the van der Waals component of the non-bonded function. Hancock [52] used this approach
to study systems including Copper and Nickel. The Bonded plus electrostatics Model defines
bonds and angles between the metal ion and its ligand as well as electrostatic potential (ESP)
charges (Fig. 29(a)) [53]. This method attempts to define the correct electrostatic representation of
the metal active site as assigning a plus two charge to a divalent metal ion would not describe reality
though formally correct. The partial atomic charges can be calculated using the RESP approach
[54] or the CMX models of Truhlar and Cramer [55]. The bond and angle force constants are derived
from experiment or calculated using ab initio or DFT methods while the torsion term has so far
been neglected. The Non Bonded Model does not define any extra bonds and places integer
charge on the metal ion [56]. Electrostatic and Lennard-Jones terms describe the interactions.
Modifications to this model to include polarization and charge transfer effects have been developed
(Fig. 29(b)) [57]. The Cationic Dummy Atom Model is related to the non bonded method
where it places dummy atoms (cations) to mimic valence electrons around the metal ion [58].

MTK++ v 0.2.0 42 of 108

M
TK++

Electrostatic and Lennard-Jones terms between the dummy atoms and ligating residues describe
the metal-ion interactions (Fig. 29(c)) [59, 60]. Other methods include those of Vedani et al. which

R1

M

R2
R3

R4

(a) Bonded Model

R1

M

R2
R3

R4

(b) Non-Bonded Model

R1

M

R2
R3

R4

(c) Cationic Dummy Atom Model

Figure 29: Three Approaches to Incorporate Metal Atoms into Molecular Mechanics Force Fields.
The bonded model defines bonds, angles, and dihedrals between the metal and ligands, while the
non-bonded model does not and uses electrostatics and van der Waals to model the interactions.
The cationic dummy atom model is a derivative of the non-bonded model where cations are placed
near the metal center to mimic valence electrons around the metal.

is a compromise between the bonded and non-bonded methods and is implemented in the YETI
program [61], the SIBFA of Gresh and co-workers [62, 63] and the Universal Force Field (UFF) of
Goddard and Rappe and co-workers [64, 65, 66]. These methods do not use a pairwise additive
potential or are not readily available in typical biomolecular modeling packages.

Carrying out MM modeling or MD simulations of metal containing proteins is a complicated
procedure using the bonded plus electrostatics model. Incorporating metals into protein force fields
is a convoluted process due to the plethora of QM Hamiltonians, basis sets and charge models to
choose from. Also it has generally been carried out by hand without extensive validation for specific
metalloproteins. Some of the published force fields for Zinc, Copper, Nickel, Iron, and Platinum
containing systems using the bonded plus electrostatics model are listed in Table 13. There have
been numerous other FFs containing various metals published including ruthenium(II)-polypyridyl
[67], cobalt corrinoids [68, 69, 70, 71], Staphylococcal Nuclease [72], alcohol dehydrogenase [73, 74,
75], and metalloporphyrins [76, 77, 78, 79, 80].

Automated procedures for the parameterization of MM functions for inorganic coordination
chemistry have been developed over the last number of years by Norrby and co-workers [81, 82].
Their attempts have focused on generating parameters using experimental, structural data from
databases such as the Cambridge Crystallographic Structural Database (CCSD) and quantum
mechanical reference data using a version of the MM3 force field [22].

MTK++ v 0.2.0 43 of 108

M
TK++

Table 13: Published Metalloprotein Force Fields Using the Bonded Plus Electrostatics Model.
Metal Protein References

Zinc Human Carbonic Anhydrase II [53, 83, 84]
Beta-lactamase [85, 86, 87, 88, 89, 90, 91, 92]
ZAFF [93]
Dinuclear Beta-lactamase [94, 95]
Farnesyl Transferase [96]

Copper Blue Copper Proteins [41, 42, 43, 44, 45, 46]
Nickel Urea Amidohydrolase [47, 48, 49, 50]

NikR [97]
Iron Cytochrome P450 [98, 99]
Platinum DNA/Cisplatin [100]
Copper, Zinc Superoxide Dismutase [3]

11 Metal Center Perception

Now with the ability to build and validate metal FFs established the task of generating a generalized
FF was initiated. Zinc was chosen as a considerable number of proteins contain that metal as
highlighted in Table 12, while also being computationally well behaved. Metalloproteins containing
zinc are both structural and functional proteins as described in section 10 and in general Zn is four
coordinate, sometimes five or six coordinate when multiple ASP/GLU residues or water molecules
bind. It was then necessary to determine all Zn environments which exist in proteins. This was
carried out using a program called pdbSearcher to analyze all structures currently in the PDB.
pdbSearcher was developed using the API provided by MTK++. All X-ray crystal structures with
a resolution below 3.0 Å were extracted from a local mirror of the PDB for further analysis. For
each metal site the primary and secondary shell ligands were determined using Harding’s bond cut-
off values as shown in Table 14 [101, 102, 103, 104, 105, 106]. These values were determined from
a series of papers describing metal coordination in the CCSD. A donor atom is considered primary
coordinated to a metal if it is within the target distance as shown in Table 14 plus some tolerance
(0.5 Å was used). Metal-donor distances lying between the target distance plus the tolerance and
the target distance plus a second tolerance (1.0 Å was used) were defined secondary ligands. For
example, if a Zn atom is less than 2.53 Å from a Histidine ND1 or NE2 atom then it is considered a
primary ligand. If it was less than 3.03 Å away then that ligand is labeled as secondary, otherwise
it is unbound. Once the number of primary and secondary shell ligands were determined, the
geometry of the metal centers were evaluated. The coordination states allowed include octahedral,
Fig. 30(a), Trigonal Bipyramid, Fig. 30(b), Square Pyramid, Fig. 30(c), tetrahedral, Fig. 30(d),
square planar, Fig. 30(e), and tetrahedral plus a non-bonded contact, Fig. 30(f). From Fig. 30 we
can see that the coordination number alone is not enough to assign a metal geometry. Thus the root
mean square deviation (RMSD) of the geometry angles from those in a regular polyhedron were
calculated. Equation 23 was used to distinguish between square planar and tetrahedral geometries

MTK++ v 0.2.0 44 of 108

M
TK++

with the ideal angles used in Table 15. Likewise, equations 24 and 25 were used for five and six
coordinate metals respectively. The atom indices in Table 15 correspond to those atoms in Fig.
30. This indexing is useful to differentiate between axial/equatorial and cis/trans ligands. The
coordination state with the lowest rms was assigned to the metal and its ligands.

Table 14: Metal-Donor Bond Target Lengths in Å. The following donor atoms of residues are
implied: HOH@O, ASP@OD1/OD2, GLU@OE1/OE2, HIS@ND1/NE2, CYS@SG, MET@SG,
SER@O, THR@O, TYR@O and the amino acid backbone carbonyl oxygen atom CRL. If a metal-
donor distance is within these target distances plus some tolerance (0.5Å) it is considered a primary
interaction.

Metal HOH ASP/GLU HIS CYS/MET SER/THR TYR CRL

Na 2.41 2.41 2.38
Mg 2.07 2.07 2.10 1.87 2.26
K 2.81 2.82 2.74
Ca 2.39 2.36 2.43 2.20 2.36
Mn 2.19 2.15 2.21 2.35 2.25 1.88 2.19
Fe 2.09 2.04 2.16 2.30 2.13 1.93 2.04
Co 2.09 2.05 2.14 2.25 2.10 1.90 2.08
Ni 2.09 2.05 2.14 2.25 2.10 1.90 2.08
Cu 2.13 1.99 2.02 2.15 2.00 1.90 2.04
Zn 2.09 1.99 2.03 2.31 2.14 1.95 2.07

δtet/sqp =

[

1

6

6
∑

i=1

(ai − aideal)
2

]1/2

(23)

δtbp/ttp =

[

1

10

10
∑

i=1

(ai − aideal)
2

]1/2

(24)

δoct =

[

1

15

15
∑

i=1

(ai − aideal)
2

]1/2

(25)

MTK++ v 0.2.0 45 of 108

M
TK++

3

5 4

6

1

2
(a) Octahedral

5
4

3

1

2
(b) Trigonal Bipyramid

3

1 4

2

5

(c) Square Pyramid

1

2 3
4

(d) Tetrahedral

1

3 2

4
(e) Square Planar

1

2 3
4

5

(f) Tetrahedral plus Non-Bonded Contact

Figure 30: Metal Ligand Geometries Perceived Using Harding’s Rules.

MTK++ v 0.2.0 46 of 108

M
TK++

Table 15: Ideal Angles Used to Calculate Root Mean Square Deviations for Tetrahedral, Square
Planar, Trigonal Bipyramidal, Square Pyramid and Octahedral Geometries. The notation a12
describes the angle between atom 1, the metal and atom 2. The atom indices correspond to Fig.
30. bm is the mean of the four angles between the apical bond and the basal bonds in square
pyramid geometries.

Type Coordination Angle (Deg) Atoms

ML4 Tetrahedral 109.5
Square Planar 180.0 a12, a34

90.0 All others

ML5 Trigonal Bipyramidal 180.0 a12
120.0 a34, a45, a35
90.0 All others

Square Pyramid bm = 1
4

∑4
i=1 ai5 a15, a25, a35, a45

(360.0 − 2bm) a12, a34

2 sin−1
(

2−1/2 [sin(180.0 − bm)]
)

a13, a23, a14, a24

ML6 Octahedral 180.0 a12, a34, a56
90.0 All others

12 Metal Center Parameter Builder

The goal of this research was to provide a platform to rapidly build, prototype, and validate MM
models of metalloproteins using the bonded plus electrostatics model for the AMBER suite of
programs [11]. The bonded plus electrostatics model was chosen over the other approaches as the
resulting parameters lend themselves to be readily added to FFs such as those in AMBER [8] and
CHARMM [12]. Also the functions used in these programs are pairwise additive meaning there are
no cross-terms and are thus easier to parameterize and less computationally expensive. The latter
is a key point when considering fully solvated metalloproteins in MD simulations can have many
hundreds of thousands of atoms. A computer program, MCPB (Metal Center Parameter Builder),
to generate FF parameters for metalloproteins was developed to this end. MCPB was not build to
supersede the approaches developed by Norrby described above but instead to incorporate a realistic
bonded and electrostatic model of the metallocenter into the AMBER FF. The nature of these
parameters was investigated in a systematic manner with the objective of creating a generalized
metal FF within the bonded plus electrostatics framework. The MCPB program was built using
the MTK++ Application Program Interface (API). A complete work flow of MCPB can be seen
in Fig. 31. The MCPB program carries out the following steps after a structure is downloaded
from the PDB. First the program checks whether the structure contains a transition metal. If
the structure does not contain a metal then the program terminates. Otherwise MCPB attempts
to determine the primary and secondary ligands of the metal using rules described by Harding
[101, 102, 103, 104, 105, 106] which will be described in more detail later in this chapter. Once a

MTK++ v 0.2.0 47 of 108

M
TK++

PDB OK? Models Setup OK? QM Calculations

Get qi, Kr, and Kθ

OK?Test FFOK?End

No

No

NoNo Metal Found

Figure 31: MCPB Flow Diagram where a biomolecular structure is downloaded from the PDB and
tested whether it contains a transition metal. If the structure contains a metal ion the MCPB
program is used to build and test molecular mechanics force field parameters.

metal site is found, MCPB creates model structures of the metal’s first coordination sphere with
which ab initio calculations can be performed on to generate AMBER-like FF parameters. These
models include one to generate charges, qi, and another to determine bond, Kr, and angle, Kθ,
force constants. The AMBER function includes bond, angle, torsion, improper, van der Waals and
electrostatic terms; however, only bond, angle and electrostatic terms are parameterized under the
assumption made by Loops et al. that dihedral terms can be ignored. Lennard-Jones parameters
are also not parameterized here due to the fact that most metals are buried and that van der Waals
interactions are not as important as the electrostatics [82]. Lennard-Jones parameters for the most
common metal ion in biology were taken from the literature [107, 108, 109, 110, 111, 112, 113, 114].
The methods of incorporating the bond, angle and charge parameters are outlined below. Once
a FF is produced it is tested using minimization techniques to observe its stability. Further tools
such as comparing the frequencies from both ab initio and the resulting FF could also be used
[115].

12.1 Equilibrium Bond Lengths and Angles

Equilibrium values for bond, req, angles, θeq, can be determined through ab initio calculations or
taken directly from the crystal structure in the PDB. There are pros and cons for using values from
both methods. Ab initio calculations are generally carried out in the gas phase but solvent effects
can be incorporated with PCM but with an added cost. Crystal structures may contain spurious
values and may not be representative of all structures with this bond type. Therefore the values
from ab initio calculations were used here. Alternatively, data from the CSD could be utilized as
well, but as with the approaches described above this method has pros and cons as well. Given
our focus on metalloproteins and not solid state metal clusters we have not compared with or used
CSD derived information.

MTK++ v 0.2.0 48 of 108

M
TK++

12.2 Force Constants

Force constants, Kr and Kθ, are calculated by first creating a model (model 1) of the metal site,
adding Hydrogen atoms using the methods described in Section 5 and then optimizing it in the gas
phase. The residues bound to the metal are approximated, for example, cysteine by a thiolate or
histidine by a methyl-imidazole, to reduce the computational cost of the minimization. However,
all bonds and angles missing from the FF were accounted for. Once a minimum is found the second
derivatives are determined.

The Cartesian Hessian matrix is shown in Eq. 26, which is the second derivative of energy with
respect to coordinates. The eigen-analysis of k provides the force constants, λi and the normal
modes, ν̂i as shown in Eq. 27. The interatomic force constant, KAB , between atoms A and B
is required to determine the force on atom A by displacing atom B as shown in Eq. 28 which is
required for a MM function.

[k] = kij =
∂2E

∂xi∂xj
(26)

Fi = −[k]ν̂iδr = −λiν̂iδr (27)

δFA = [kAB]δrB (28)

From the minimized structure of model 1 the metal-Ligand bond and angle force constants are
evaluated. The force constants are converted from Cartesian into internal coordinates using the
Gaussian program [116] providing the following keyword (iop(7/33=1)). Force constants were also
determined using a method described by Seminario [117]. Here the force constants are calculated
from sub matrices of the Cartesian Hessian matrix. The bond force constant is calculated using
Eq. 29 where λAB

i are the eigenvalues of the AB Hessian sub matrix, ν̂AB
i are the corresponding

eigenvectors and ûAB is the unit vector. Similarly, the angle force constants were calculated using
the Eq. 30. The Seminario method has the advantage over the ”Traditional” method of determining
force constants as it avoids defining internal coordinates. The MCPB program then reads either
the internal force constant matrix or the Seminario derived parameters and assigns the values to
the appropriate bonds and angles.

The MCPB program uses conversion factors of 627.5095 and 2240.87 for Hartree to kcal/mol
and Hartree/Bohr2 to kcal/molÅ2 respectively.

kAB =
3
∑

i=1

λAB
i |ûAB · ν̂AB

i | (29)

1

kABC
=

1

R2
AB

∑3
i=1 λ

AB
i |ûPA · ν̂AB

i |
+

1

R2
CB

∑3
i=1 λ

CB
i |ûPC · ν̂CB

i |
(30)

where:

MTK++ v 0.2.0 49 of 108

M
TK++

ûABC =
r̂CB × r̂AB

|r̂CB × r̂AB| (31)

ûPA = ûABC × r̂AB (32)

ûPC = r̂CB × ûABC (33)

12.3 Point Charges

The atom centered partial charges were derived using the Merz-Singh-Kollman (MK) [118] and the
Restrained ElectroStatic Potential (RESP) [119, 120, 121] schemes using a second model (model
2) of the metal center. This model included all atoms of a bound residue which were capped with
acetyl (ACE) and N-methylamine (NME) residues. If two ligating residues were less than five
residues apart then they were tethered with glycine residues and the chain capped with ACE and
NME. Hydrogen atoms were added using the methods described in section 5. This model was not
allowed to relax to save computational expense and to keep the crystallographic geometry. The
van der Waals radii for the metals used in the MK scheme were taken from the literature. The
MK/RESP scheme was favored over other charge model schemes because its ability to adjust the
charge of the capped or linking residues to an integer value, thus allowing the formal charge of the
cluster to disperse over the metal and the bound ligands.

Four different methods to develop charges are implemented within MCPB. The first method
allows all atoms of the bound residue to change (ChgModA), the second technique restrains the
backbone heavy atoms (CA, N, C, O) to those values found in the AMBER parm94 force field
(ChgModB), the third one restrains all the backbone atoms (CA, H, HA, N, HN, C, O) to the
AMBER parm94 force field values (ChgModC) while the fourth one (ChgModD) also adds carbon
beta (CB) into the restraint list.

MTK++ v 0.2.0 50 of 108

M
TK++

13 Development History

• 2011-1-15 Martin Peters

– Added Eigen3 library

• 2010-8-25 Martin Peters

– AmberTools Transfer

• 2010-8-19 Martin Peters

– Added latex documentation

• 2010-3-18 Martin Peters

– Added tools: capActiveSite, frcmod2xml, func, hybrid, mmE, prep2xml, protonator,
sequenceAligner, stats, superimposer, MCPB

– Updated tests: fileFormatsTest, hybridizeTest, mmTest, ringTest

– Added test: linearAlgebra

– Added support for apache-log4cxx-0.10.0

– Added Diagnostics library (contributed by QuantumBio Inc.)

– Added reduced boost library v1.38.0

– Updated version number to 0.2.0

• 2010-3-9 Martin Peters

– Added reduced boost library v1.33.0

– Updated version number to 0.1.9

• 2010-2-1 Martin Peters

– Added tinyxml library for xml parsing

– Updated version number to 0.1.8

• 2009-4-2 Martin Peters

– Major overall to mtkppParser

– Much better support of multi metal containing proteins

– Updated version number to 0.1.7

• 2008-2-26 Martin Peters

– Added Trolltech’s Qt library for xml parsing

MTK++ v 0.2.0 51 of 108

M
TK++

– Updated version number to 0.1.6

• 2008-1-2 Martin Peters

– Added seqAlign to molecule for protein alignment

– Updated version number to 0.1.5

• 2007-11-2 Martin Peters

– Update Contributed by Lance Westerhoff (QuantumBio)

– Added support in all Makefiles to configure/build library in a directory other then the
main source directory e.g.:

cd MTKpp/.. ; mkdir build ; cd build ; ../MTKpp/configure ...

• 2007-9-28 Martin Peters

– Added error handling library called Log

– Removed most programs from tools directory and created a new repository called MTKpp-
tools

– Updated version number to 0.1.4

• 2007-6-2 Martin Peters

– Added metalCenter to molecule for metalloprotein perception

– Added amberParser to Parsers for writing prmtop and inpcrd files to interface with
AMBER

– Added more fragments to fragLib

– Added program for SE-COMBINE

– Updated version number to 0.1.3

• 2007-3-16 Martin Peters

– Upgraded superimpose to carry out smart superimposition and rmsd

– Now using unsigned long long on 64-bit machines for torsion indexing

– Upgraded watProtonate

– Added frcmodParser

– Added copyright to Utils

– Added pdbSearcher, prep2xml, frcmod2xml, confAnalysis, MTKppConstants and print-
Header to tools directory

– Updated version number to 0.1.2

MTK++ v 0.2.0 52 of 108

M
TK++

• 2007-2-7 Martin Peters

– Upgraded the Statistics Library to use Boost

– Added dMParser to populate the Sheet and Table classes

– Added acParser and prepParser

– Added FragGen, func, aSiteFeatures, capActiveSite, CheckPDB, DataBaser, nmrSimi-
larity and stats to tools directory

– Added the hydrophobize class

– Updated version number to 0.1.1

• 2006-12-9 Martin Peters

– Added hybridize, bond order and formal charge perception capability

– Updated version number to 0.1.0

• 2006-11-20 Martin Peters

– Added Graph class

– Added MKL support

– Added mmE and nmrParms to tools dir

– Updated version number to 0.0.9

• 2006-10-6 Martin Peters

– Added selection ability

– Now using the namespace MTKpp

– Added first derivatives to MM code

– Updated version number to 0.0.8

• 2006-8-16 Martin Peters

– Added Maximum Common Pharmacophore detection

– Added XML based fragment library

– Added protonator, torProfiler, superimpose, and stdLib2Sdf to tools dir

– Updated version number to 0.0.7

• 2006-5-23 Martin Peters

– Added functional group recognition

– Added basic molecular fingerprint generation

– Major update to MM code

MTK++ v 0.2.0 53 of 108

M
TK++

– Updated version number to 0.0.6

• 2006-4-19 Martin Peters

– Added files to the tests directory

– fileFormats, mm, and ring code is tested

• 2006-3-16 Martin Peters

– Added tests and tools directories

• 2006-3-15 Martin Peters

– Added molecule conformer capability - rotatable bond based conformer class

– Updated version number to 0.0.5

• 2006-3-15 Martin Peters

– Added molecule superimpose capability

– Updated version number to 0.0.4

• 2006-2-9 Duane Williams

– Added pdbParser Write function

• 2006-2-9 Martin Peters

– Added dcParser Write function

• 2006-1-28 Martin Peters

– Added hydrogen addition capability - Relies on all the molecular information to be
present

– Updated version number to 0.0.3

• 2006-1-27 Martin Peters

– Updated sdfParser and molParser Write functions

• 2006-1-19 Martin Peters

– Added ring perception capability

– Updated version number to 0.0.2

• 2006-1-15 Martin Peters

– Updated AUTHORS

MTK++ v 0.2.0 54 of 108

M
TK++

• 2006-1-14 Martin Peters

– Added doxygen documenting ability

• 2006-1-01 Martin Peters

– Project Started

MTK++ v 0.2.0 55 of 108

M
TK++

14 Tests

After MTK++ has been configured and compiled the tests should be run to determine if the package
is working correctly using the following commands:

cd builddir

make check

After the tests have run the following output should be generated:

Making check in tests

make fileFormatsTest linearAlgebraTest ringTest mmTest hybridizeTest

make[2]: ‘fileFormatsTest’ is up to date.

make[2]: ‘linearAlgebraTest’ is up to date.

make[2]: ‘ringTest’ is up to date.

make[2]: ‘mmTest’ is up to date.

make[2]: ‘hybridizeTest’ is up to date.

make check-local

--

Test ‘fileFormatsTest’ PASSED.

--

Test ‘linearAlgebraTest’ PASSED.

--

Test ‘ringTest’ PASSED.

--

Test ‘mmTest’ PASSED.

--

Test ‘hybridizeTest’ PASSED.

--

Three files are generated for each test: a log, out, and diff files. The log file contains information
dumped by the code during execution. The out file contains results of the calculation while the diff
file contains the difference between the out file and the expected results.

14.1 File Formats

The file formats test reads and writes of the following file types:

1. elements xml file (Read only)

2. MM parameter xml files (Read/Write)

3. MM standard residue xml files (Read/Write)

4. table xml files (Read/Write)

MTK++ v 0.2.0 56 of 108

M
TK++

5. pdb files (Read/Write)

6. state xml files (Write)

7. MDL mol files (Read/Write)

8. sd files (Read/Write)

9. mol2 files (Read/Write)

10. xyz files (Read/Write)

11. pam matrix files (Read)

14.2 Hybridize

The hybridize test assesses MTK++ ability to predict atom hybridizations, bond orders, and formal
charges of 261 ligands obtained from the PDB and the literature list in Table 16. See section 3 for
more details of how the algorithm works.

14.3 Linear Algebra

This is a very simple test of the connection between MTK++ and boost. Matrix diagonalization
and Singular Value Decomposition (SVD) methods are tested.

14.4 Molecular Mechanics

The MM tests evaluates the energy function within MTK++ for 20 pentapeptides contains all
amino acids listed below:

GGAGG, GGCGG, GGDGG, GGEGG, GGFGG, GGGGG, GGHGG, GGIGG, GGKGG, GGLGG

GGMGG, GGNGG, GGPGG, GGQGG, GGRGG, GGSGG, GGTGG, GGVGG, GGWGG, GGYGG

This test outputs the bond, angle, torsion, improper, van der Waals, electrostatic, 1-4 van der
Waals and 1-4 electrostatic components of the MM energy function:

GGAGG Energies 9.75857 24.571 16.9042 -4.62884 -361.285 10.4182 313.053 8.79176

14.5 Ring

This test also reads the 261 ligands from Table 16 and outputs the number of rings, the SSSR, and
whether the rings are planar and/or aromatic:

1A42_lig

nRings(2)

SSSR(5,6)

ring [1] : 2042 2053 2054 2055 2056 planarity = 1 aromaticity = 1

ring [2] : 2044 2054 2055 2057 2060 2043 planarity = 0 aromaticity = 0

See section 4 for more details of the algorithm.

MTK++ v 0.2.0 57 of 108

M
TK++

Table 16: Hybridize Ligand Data Set.
Receptor PDB-ID

MMP-1 966C, 1CGL, 1HFC, 2TCL
MMP-3 1HY7, 1B3D, 1BQO, 1CIZ, 1D8F, 1G49, 1SLN,

2USN, 1B8Y, 1C3I, 1D5J, 1D8M, 1G4K, 1USN, 1BIW,
1CAQ, 1D7X, 1G05, 1HFS, 2D1O, 1HY7

MMP-7 1MMQ, 1MMP, 1MMR
MMP-8 1I76, 1A85, 1I73, 1JAP, 1JJ9, 1MNC, 1ZVX,

1A86, 1JAN, 1JAQ, 1KBC, 1ZP5, 2OY2, 1BZS, 1JAO,
1JH1, 1MMB, 1ZS0, 1I76

MMP-12 1Y93, 1JIZ, 1JK3, 1RMZ, 1ROS, 2OXW
MMP-13 830C, 1CXV, 1XUD, 1YOU, 2D1N, 456C, 1XUC,

1XUR, 1ZTQ, 2OW9
TNF-α 2DDF, 1BKC, 1ZXC, 2A8H, 2FV5, 2FV9
converting enzyme
Adamalysin II 4AIG, 2AIG, 3AIG
Trypsin 1PPH, 1TNH, 1TNI, 1TNJ, 1TNK, 1TNL, 3PTB

P0XX (96 Other ligand from literature
Carboxypeptidase A 1CBX, 2CTC, 3CPA
Glycogen Phosphorylase 1GPY, 3GPB, 4GPB, 5GPB
Immunoglobin 1DBB, 1DBJ, 1DBK, 1DBM, 2DBL
Streptavidin 1SRE, 1SRF, 1SRG, 1SRH, 1SRI, 1SRJ
Dihydrofolate Reductase 1DHF, 4DFR
Estrogen Receptor 1ERR, 3ERT
Peroxisome Proliferator- 1FM6, 1FM9
Activated Receptor γ
Human Carbonic Anhydrase II 1A42, 1BN1, 1BN3, 1BN4, 1BNM, 1BNN, 1BNQ, 1BNT,

1BNU, 1BNV, 1BNW, 1CIL, 1CIM, 1CIN, 1CNX, 1EOU,
1G1D, 1G52, 1G53, 1G54, 1I8Z, 1I90, 1I91, 1IF4,
1IF5, 1IF6, 1IF7, 1IF8, 1IF9, 1KWQ, 1KWR, 1OKL,
1OKN, 1OQ5, 1TTM, 1XPZ, 1XQ0, 1YDA, 1ZE8

Thrombin 1DWC, 1DWD
Elastase 1ELA, 1ELB, 1ELC, 1ELD, 1ELE
Thermolysin 1TLP, 1TMN, 2TMN, 3TMN, 4TLN, 4TMN, 5TMN
HIV-Protease 1HIV
Endothiapepsin 2ER7, 4ER1, 4ER2, 5ER1, 5ER2
Human Rhinovirus 2R04, 2R06, 2RR1, 2RS3

MTK++ v 0.2.0 58 of 108

M
TK++

15 Examples

Most of the examples below use the human Carbonic Anhydrase II co-crystallized structure PDBID:
1A42. All examples can be found in the ’examples’ directory that was distributed with the MTK++
code.

15.1 Active Site Capping (capActiveSite)

Given a co-crystallized PDB file this utility can cut out the active site and cap the resulting amino
acid strands.

The program has the following options:

capActiveSite: Caps active site using a cutoff

usage: capActiveSite [flags] [options]

options:

-r receptor pdb file

-l ligand mol/pdb file

-c distance cutoff [10.0]

-o output pdb file

-a log file

flags:

-h help

The capActiveSite example cuts the active site from 1A42 with a distance cut off of 5.0
Ångström. The active site is saved to a pdb file and the resulting model can be visualized in
Fig. 32.

#!/bin/csh -f

echo " "

echo " MTK++ capActiveSite example"

echo " "

../../tools/capActiveSite -r 1A42_rec.pdb \

-l 1A42_lig_w.mol \

-c 5.0 \

-o 1A42_aSite.pdb \

-a 1A42_aSite.log || goto error

echo No errors detected

exit(0)

MTK++ v 0.2.0 59 of 108

M
TK++

(a) 1A42 Complex - Cartoon/Sticks (b) 1A42 Complex - Surface

(c) 1A42 Active Site - Sticks (d) 1CTT Active Site - Surface

Figure 32: Active Site Capping.

error:

echo Problem: check .out and try again

exit(1)

MTK++ v 0.2.0 60 of 108

M
TK++

15.2 File Conversion (frcmod2xml, prep2xml)

The frcmod2xml and prep2xml utility program convert AMBER formatted parameter files into
XML files which are used by MTK++. frcmod files are necessary to supplement the core GAFF
forcefield with new atom type, bond, angles etc. While the prep file contains the atom names and
type, connectivity and partial charges of the newly parameterized compound.

The frcmod2xml program has the following options:

frcmod2xml: Converts frcmod file to MTK++ xml file

usage: frcmod2xml [flags] [options]

options:

-i frcmod file

-o parameter xml file

-n parameters name

-a log file

flags:

-h help

The frcmod2xml example converts the frcmod file created by ANTECHAMBER of the brin-
zolamide ligand bound to hCAII in the PDB file 1A42. The A42.xml can then be read by other
MTK++ tools.

#!/bin/csh -f

echo " "

echo " MTK++ frcmod2xml example"

echo " "

../../tools/frcmod2xml -i A42.frcmod \

-o A42.xml \

-n A42 \

-a A42.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

The prep2xml program has the following options:

MTK++ v 0.2.0 61 of 108

M
TK++

prep2xml: Converts prepin file to MTK++ xml file

usage: prep2xml [flags] [options]

options:

-i prep file

-o lib xml file

-g group name

-f frag name

-n mol name

-l hybridize name

-a log file

flags:

-h help

The prep2xml example similarly converts the 1A42 ligands prep file in a XML file. Here the
user is required to specify the group, fragment and molecule name for the compound.

#!/bin/csh -f

echo " "

echo " MTK++ prep2xml example"

echo " "

../../tools/prep2xml -i A42.prep \

-o A42.xml \

-g HCAII \

-f A42 \

-n A42 \

-a A42.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

MTK++ v 0.2.0 62 of 108

M
TK++

15.3 Hybridize

The hybrid program determine the atom hybridizations and bond orders of molecules in pdb format
using the Labute algorithm [7].

The program takes a pdb file as input and output either a pdb or mol file. A Labute parameter
file can be provided but is not required in most cases.

hybrid: Determines bond orders of ligands

usage: hybrid [flags] [options]

options:

-i input pdb file

-p parameters file

-o output mol/pdb file

-l log file

flags:

-h help

The hybrid example is run using the following script:

#!/bin/csh -f

echo " "

echo " MTK++ hybrid example"

echo " "

../../tools/hybrid -i 1A42_lig.pdb \

-o 1A42_hybrid.mol \

-l 1A42_hybrid.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .log and try again

exit(1)

The pre and post hybrid structure of the ligand (BZO) in 1A42 are shown in Fig. 33(a) and
33(b) respectively.

MTK++ v 0.2.0 63 of 108

M
TK++

(a) 1A42 PDB Ligand (b) 1A42 Post hybrid

Figure 33: Ligand Hybridization.

15.4 Functionalize (func)

MTK++ has a build-in fragment library of over 460 fragments and cores. Using this library the
func program reads a MDL mol file and outputs a sd file where properties fields are populated with
information regarding which fragments were found.

The func program has the following options:

func: Determines the functional groups in ligands

usage: func [flags] [options]

options:

-i input MDL mol file

-o output file

-a log file

flags:

-h help

The func example reads the MDL mol file of brinzolamide outputted from the hybrid program
and outputs an sd with the fragments listed. The core fragment ’F01’ is found to be contained
in this ligand. The fragment is a member of the HCAII group and is listed in the sdf file as
’FuncGroup:HCAIIF01’.

#!/bin/csh -f

MTK++ v 0.2.0 64 of 108

M
TK++

echo " "

echo " MTK++ func example"

echo " "

../../tools/func -i 1A42_lig_w.mol \

-o 1A42_func.sdf \

-a 1A42_func.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

MTK++ v 0.2.0 65 of 108

M
TK++

15.5 MM Energy

The mm program calculates the AMBER gas phase Energy of provided pdb file.
The options of the program are show below:

mmE: Calculates the AMBER Energy/Gradients

usage: mmE [options] pdbFile

options:

-s Standard Library XML File

-f Frcmod XML File

-c Non Bonded Cutoff [100.0]

-b Calculate Bond Energy [1]

-a Calculate Angle Energy [1]

-t Calculate Torsion Energy [1]

-i Calculate Improper Energy [1]

-n Calculate Non Bonded Energy [1]

-w Calculate H Bond Energy [0]

-m Minimize [0]

- 0 None

- 1 Hydrogens Only

- 2 All Atoms

-k Minimize Method [2]

- 0 Steepest Descents

- 1 Conjugate Gradient (non implemented)

- 2 lBFGS

-q Minimize steps [100]

-p Write Output Every N Steps [1]

-o Output file

-z Log file

flags:

-v Verbose [1]

-h Help

The mm example calculates the MM energy of the pentapeptide, GGMGG, show in Fig. 34.

#!/bin/csh -f

echo " "

echo " MTK++ mmE example"

echo " "

MTK++ v 0.2.0 66 of 108

M
TK++

../../tools/mmE -z mmE.log -o mmE.out GGMGG.pdb || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

Figure 34: GGMGG Pentapeptide.

The output file contains the following:

PDB File : GGMGG.pdb

Library File :

Frcmod File :

Non Bonded Cut Off : 100

Calculate Bond Energy : 1

Calculate Angle Energy : 1

Calculate Torsion Energy : 1

Calculate Improper Energy : 1

MTK++ v 0.2.0 67 of 108

M
TK++

Calculate NonBonded Energy : 1

Calculate H-Bond Energy : 0

Minimize : 0

Number of Atoms = 57

Number of Bonds = 56

Number of Angles = 97

Number of Torsions = 139

Number of Impropers = 12

MM Setup took 0 seconds.

(1) BOND ENERGY = 6.63744

(2) ANGLE ENERGY = 23.9241

(3) TORSION ENERGY = 16.7491

(4) IMPROPER ENERGY = 2.20171

(5) DIHEDRAL ENERGY (3+4) = 18.9508

(6) 1-4 VDW ENERGY = 11.9489

(7) VDW ENERGY = -4.87678

(8) TOTAL VDW ENERGY (6+7) = 7.0721

(9) ELE ENERGY = -357.212

(10) 1-4 ELE ENERGY = 309.548

(11) TOTAL ELE ENERGY (9+10) = -47.6634

(12) NON-BONDED ENERGY (8+11) = -40.5913

(13) H-BOND ENERGY = 0

--

TOTAL ENERGY (1+2+5+12) = 8.92099

R^6 LENNARD JONES ENERGY = -29.0228

R^12 LENNARD JONES ENERGY = 36.0949

MTK++ v 0.2.0 68 of 108

M
TK++

15.6 Protonate

The protonate programs adds Hydrogen atoms to proteins, ligands and water molecules. It also
adds missing atoms from standard residues. The position of polar Hydrogens are also optimized to
improve H-Bonding contacts.

The program takes a pdb file as input and returns a pdb file.

protonator: Adds Hs to Pro/Lig/Wat Molecules

usage: protonator [flags] [options]

options:

-i input pdb file

-o output pdb file

-l log file

flags:

-h help

The example is executed using the shell script:

#!/bin/csh -f

echo " "

echo " MTK++ protonator example"

echo " "

../../tools/protonator -i 1A42_rec.pdb \

-o 1A42_protonator.pdb \

-l 1A42_protonator.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

The addition of Hydrogen to 1A42 is show in Fig. 35(a) and 35(b) to illustrate its ability to
handle metalloproteins.

MTK++ v 0.2.0 69 of 108

M
TK++

(a) 1A42 Pre protonator (b) 1A42 Protonated

Figure 35: Hydrogen Atom Addition.

15.7 Sequence Alignment

The sequenceAligner programs gives the user the ability to superimpose two structures when the
residue and/or the atom numbers are out of sync. This is common when dealing with a family
of protein-ligand complexes and researcher would like to see the ligands superimposed using the
backbones of the proteins.

The program has two input arguments. The first is a control file and the second is a log file.

sequenceAligner: Sequence Alignment and Structural

Superimposition

usage: sequenceAligner [flags] [options]

options:

-i input file

-o log file

flags:

-h help

An example of where two HCAII complexes (1A42 and 1XQ0) are superimposed is show below.

#!/bin/csh -f

echo " "

echo " MTK++ sequenceAligner example"

MTK++ v 0.2.0 70 of 108

M
TK++

echo " "

../../tools/sequenceAligner -i 1A42_1XQ0.in \

-o 1A42_1XQ0_sequenceAligner.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

The input file starts by sourcing a setting file which provides the location of libraries required
by MTK++ and can be reused for many sequencedAligner runs. Then the two complexes are read
followed by the assignment of disulfide bond, atom types and finally all the atom connections are
made.

Then it is necessary to define the template and query doing the alignment. Here 1XQ0 will be
superimposed onto 1A42. The runAlign command is used to carry out the sequence alignment. It
takes four parameters: algorithm type, gap penalty type, gap open, gap extend. The Needleman-
Wunsch (1) and Smith-Waterman (2) algorithms are available. There are three gap penalty types
including the constant gap penalty (1), then linear gap penalty (2), and the affine gap penalty (3).
For further details of these and the gap open and extend parameters please read elsewhere. The
result of the sequence alignment is used to guide the structural superimposition. The superimpose
takes one parameter from alphaCarbons, bb, or bbb. alphaCarbons implies that only the coordi-
nates of the ’CA’ carbons are used in the superimposition. The bb parameter is used if the user
wants to align using the ’CA, N, C, O’ atoms while the bbb parameter supplements this with ’CB’.
The transformation matrix of this superimposition is saved internally for later use. The tansform
command uses this transformation matrix from the previous step to adjust the coordinates of the
query structure. The writePdb command saves the alignment structure to a file.

source 1A42_1XQ0_settings.txt

#

readPdb 1A42_recLig.pdb

readPdb 1XQ0_recLig.pdb

removeHs

#

assignDisulfideBonds

atomType

assignConnectivity

#

setTemplate 1@start

setQuery 2@start

runAlign 1 3 2.0 0.5

MTK++ v 0.2.0 71 of 108

M
TK++

superimpose alphaCarbons

transform 2@start 2@end alphaCarbons

#

writePdb 2@start 2@end 1A42_1XQ0_sequenceAligner.pdb

quit

The settings file contains the following:

USER INPUT

set MTKppData ../../../../dat/mtkpp

setLoggingLevel 4

#

READ ELEMENTS FILE

loadElements MTKppData/elements.xml

#

READ PARAMETER FILES

loadParam MTKppData/parm94.xml

loadParam MTKppData/parm_gaff.xml

#

READ LIBRARY FILES

loadLib MTKppData/aminont94.xml

loadLib MTKppData/aminoct94.xml

loadLib MTKppData/amino94.xml

#

READ PAM FILES

loadPam MTKppData/PAM/PAM250

The results are placed in the log file. The details of the calculation are summarized including
the alignment algorithm used and the resulting RMSD is printed:

Message: Results

Options used:

Algorithm Type = 1

Gap Penalty Type = 3

Gap Open Value = 2

Gap Extend Value = 0.5

Maximum Gap Value = 10

PAM File = AMBERHOME/dat/mtkpp/PAM/PAM250

KEY:

| == similar

: == similar

== dissimilar

MTK++ v 0.2.0 72 of 108

M
TK++

^ == gap

ALIGNMENT

HWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNV

|||

HWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNV

EFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKA

|||

EFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKA

VQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLT

|||

VQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLT

TPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASF

|||

TPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASF

STATS

Identicals = 256/256 (100)

Similars = 256/256 (100)

Dissimilars = 0/256 (0)

Gaps = 0/256 (0)

RMSD OF ALPHA-CARBONS = 0.371362

The structures of the pre-aligned pdb files is shown in Fig. 36(a). The aligned proteins and ligands
are shown in Fig. 36(b) and 36(c) respectively.

MTK++ v 0.2.0 73 of 108

M
TK++

(a) 1A42-1XQ0 Pre Alignment

(b) 1A42-1XQ0 Protein Aligned (c) 1A42-1XQ0 Ligand Alignment

Figure 36: Structural Alignment and Superimposition.

MTK++ v 0.2.0 74 of 108

M
TK++

15.8 Superimposer

The superimposer program carries out structural superimposition of molecules such as proteins or
ligands.

superimposer: Structural Superimposition

usage: superimposer [flags] [options]

options:

-t template file

-l template lib xml file

-f flexible file

-e flexible lib xml file

-p aligned file

-k calculation kind

:- 1 coordinate RMSD [no fitting]

:- 2 atom type based RMSD [no fitting] default

:- 3 RMSD

:- 4 atom type based RMSD

:- 5 RMSD & Molecules Superimposed

-v verbose

:- 0 rmsd is printed [default]

:- 1 all output

-a log file

-o output file

flags:

-h help

The superimposer example carries out the superimposition of a conformer of BZO onto the original
structure found in the pdb. The novelty lies in the fact that the atom order is not the same in the
two files and so the program uses atom type matching functionality to find the optimal alignment.
To confirm this the first five atoms from the original file are as follows:

ATOM 1 C7 A42 1 -0.878 10.903 15.178 -0.095810

ATOM 2 H5 A42 1 0.092 10.547 14.830 0.053860

ATOM 3 H6 A42 1 -1.194 11.750 14.569 0.034250

ATOM 4 H7 A42 1 -0.798 11.215 16.220 0.036590

ATOM 5 C6 A42 1 -1.915 9.769 15.059 0.126490

While the first five atoms from the conformer file are:

ATOM 1 C1 A42 1 -5.511 3.062 16.093 -0.202100

MTK++ v 0.2.0 75 of 108

M
TK++

ATOM 2 N1 A42 1 -4.717 1.279 17.877 -1.001370

ATOM 3 O1 A42 1 -5.486 3.439 18.546 -0.682280

ATOM 4 S1 A42 1 -5.693 2.367 17.638 1.271670

ATOM 5 C2 A42 1 -4.138 5.122 11.957 0.131970

The superimposer example looks like the following:

#!/bin/csh -f

echo " "

echo " MTK++ superimposer example"

echo " "

../../tools/superimposer -t 1A42_lig_H.pdb \

-l A42.xml \

-f 1A42_conformer.pdb \

-k 4 \

-v 0 \

-p 1A42_superimposer.pdb \

-a rmsd.log \

-o rmsd.out || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

The results of the calculation are placed in the out file:

RMSD = 0.514339

TYPE = |Atom Type Based RMSD|

The pre and post superimposer structures of BZO are shown in Fig. 37(a) and 37(b) respectively.

MTK++ v 0.2.0 76 of 108

M
TK++

(a) 1A42-Conformer Pre Alignment (b) 1A42-Conformer Aligned

Figure 37: Ligand Atom Type Based Superimposition.

15.9 pdbSearcher

The pdbSearcher programs gives the user the ability to search a local copy of the Protein Data
Bank for metal containing proteins. The program returns hits and geometric information regarding
the metal center.

The program has two input arguments. The first is a control file and the second is a log file.

pdbSearcher: Searches a local copy of the

Protein Data Bank

usage: pdbSearcher [flags] [options]

options:

-i input file

-l log file

flags:

-h help

#!/bin/csh -f

echo " "

echo " MTK++ pdbSearcher example"

echo " "

MTK++ v 0.2.0 77 of 108

M
TK++

../../tools/pdbSearcher -i list.in \

-l list.log || goto error

echo No errors detected

exit(0)

error:

echo Problem: check .out and try again

exit(1)

The input file contains a series of commands which pdbSearcher executes.

Set up parameters

writeMetalEnvironment 1

expTechniques X-RAY NMR UNKNOWN

resolution 3.0

Read input list

Contains two file names: 1CTT.pdb.Z and 1A42.pdb.Z.

readPDBList pdbList list.txt

Determine which files have zn

hasMetal pdbList znList zn

output the geometry of the metal atoms

getEnvironment znList znEnvironments zn

Clean up

quit

Information such as resolution, experiement technique, primary/secondary shell residues is out-
putted by pdbSearcher:

FILE_NAME,RESOLUTION,EXP_TECH,TOTAL_NUM_ATOMS,NUM_METAL_ATOMS,RES_NAME,RES_ID,AT_NAME,

AT_ID,B_FACTOR,PRIM_SHELL,SEC_SHELL,GEOM,GEOM_RMS,ERROR

1CTT.pdb.Z,2.2,UNKNOWN,2286,1, ZN,296,ZN ,2238,22.4,HCCO,,tet,7.73763,0

1A42.pdb.Z,2.25,X-RAY,2118,1, ZN,262,ZN ,2041,6.76,HHHX,,tet,9.47689,0

More verbose data is also outputted by the program at the atom level:

FILE_NAME,METAL_RES_NAME,METAL_RES_ID,METAL_NAME,METAL_ID,RES_NAME,RES_ID,AT_NAME,

AT_ID,DISTANCE,TYPE,B_FACTOR,PRIM_SHELL,SEC_SHELL,GEOM1,GEOM1_RMS,GEOM2,GEOM2_RMS

1CTT, ZN,296,ZN ,2238,HIS,102, ND1,761,2.0181,p,26.25,CCHO,,tet,7.73763,sqp,41.1116

1CTT, ZN,296,ZN ,2238,CYS,129, SG ,962,2.4226,p,23.56,CCHO,,tet,7.73763,sqp,41.1116

1CTT, ZN,296,ZN ,2238,CYS,132, SG ,982,2.11325,p,19.31,CCHO,,tet,7.73763,sqp,41.1116

MTK++ v 0.2.0 78 of 108

M
TK++

(a) 1A42 (b) 1CTT

(c) 1A42 Metal Center (d) 1CTT Metal Center

Figure 38: Metal Environment Perception.

MTK++ v 0.2.0 79 of 108

M
TK++

1CTT, ZN,296,ZN ,2238,HOH,700, O ,2287,1.84415,p,13.66,CCHO,,tet,7.73763,sqp,41.1116

1A42, ZN,262,ZN ,2041,HIS,94, NE2,732,2.11157,p,5.75,HHHX,,tet,9.47689,sqp,39.157

1A42, ZN,262,ZN ,2041,HIS,96, NE2,753,1.99282,p,2,HHHX,,tet,9.47689,sqp,39.157

1A42, ZN,262,ZN ,2041,HIS,119, ND1,930,1.97059,p,2.88,HHHX,,tet,9.47689,sqp,39.157

1A42, ZN,262,ZN ,2041,BZO,555, N21,2051,1.97794,p,2.77,HHHX,,tet,9.47689,sqp,39.157

MTK++ v 0.2.0 80 of 108

M
TK++

15.10 MCPB

The MCPB programs gives the user the ability to create MM parameters for metal containing
proteins using the bonded plus electrostatics model. MCPB uses MTK++’s selection syntax to
select subsets of molecular data to operate on, please consult section 2.2 of this manual for more
details.

The program has two input arguments. The first is a control file and the second is a log file. A
full listing of all the commands used by MCPB can be found by using the -f flag.

MCPB: Semi-automated tool for metalloprotein

parameterization

usage: MCPB [flags] [options]

options:

-i script file

-l log file

flags:

-h help

-f function list

The MCPB example carries out the active site parameterization of a di-zinc system (PDB ID:
1AMP) shown above in Fig. 27(a). The parameterization is broken down into stages since MCPB
relies on external packages for results including Gaussian and RESP. Most of the steps are carried
out using MCPB but some require user input and instruction. The full example can be run using
the run.MCBP.csh script supplied. The Gaussian steps do not need to be carried out as the output
necessary can be found in the data folder.

15.10.1 Schematic Generation

The first step in generating parameters for a metal active site is to prepare a schematic diagram
similar to the one shown in Fig. 39 using a tool such as ChemDraw.

15.10.2 Source PDB File

The second step is to source a PDB file for the protein of interest. Here the 1AMP file was
downloaded from the PDB site and placed in the $AMBERHOME/examples/mtkpp/MCPB/data
folder. The 1AMP.pdb file was manually edited where the header and the connect information
was removed. Also residues 256 and 935 were renamed HID and MOH respectively. The lat-
ter was carried out so that the hydroxyl state was parameterized. This file was saved as called
1AMP OH fixed.pdb in the data folder.

MTK++ v 0.2.0 81 of 108

M
TK++

Figure 39: 1AMP schematic.

15.10.3 Generate the MCPB scripts

The script found in genMetalFF.sh is used to generate various files that are used during the creation
of FF parameters. The name of the protein is passed to the shell script and it is this name that is
used to distinguish parameter sets.

sh genMetalFF.sh -n 1AMP_OH

15.10.4 Settings file

One of the file generated in the previous step is the settings file 1AMP OH settings.bcl. This file
is not run directly but is instead ”sourced” in most of the other bcl scripts. It contains a number
of commands, including setting the variable NAME and loading the desired parameter databases
and fragment libraries. An example of a settings file looks like the following where AMBERHOME
is replaced by the users environment variable.

set NAME 1AMP_OH

Load AMBER Parameters

loadParam AMBERHOME/data/parm94.xml

loadParam AMBERHOME/data/parm_gaff.xml

loadParam AMBERHOME/data/metals/metalParm.xml

Load AMBER libraries

loadLib AMBERHOME/data/amino94.xml

loadLib AMBERHOME/data/aminont94.xml

loadLib AMBERHOME/data/aminoct94.xml

loadLib AMBERHOME/data/fragLib/terminal.xml

loadLib AMBERHOME/data/metals/metals.xml

MTK++ v 0.2.0 82 of 108

M
TK++

The settings file can be alter to use other libraries and parameters. For example, the ff99SB
(param99.xml) forcefield can be used instead of the default FF94 (param94.xml) or add non
standard aminos such lysine NZ-carboxylic acid or carboxymethylated cysteine (AMBERHOME/-
dat/mtkpp/nonStandardAAs/nonstandardAAs.xml).

15.10.5 Structural Preparation

To add Hydrogens, define disulfide bonds, and set Histidine residue names to the fixed pdb file the
following command is used:

MCPB -i 1AMP_OH_addHs.bcl \

-l 1AMP_OH_addHs.bcl.log

15.10.6 Side Chain Model

The next step and probably the most time consuming is the preparation of the MCPB script files
to create the first of the two models shown in Fig. 40. The first model (Model 1 (Fig. 40(a)))
is required to determine the new bond and angle force constants while the second (Model 2, Fig.
40(b)) is used to generate partial charges. Model 1 is created using the 1AMP OH sidechain.bcl file
stored in the data folder. This file is not created by the genMetallFF script and must be created
by hand. Most of the file should be fairly self-explanatory once the comments are considered.

#

Load settings

#

source 1AMP_OH_settings.bcl

#

Create non-standard residue library

#

createStdGroup NAME

copyStdResidue aminoAcids94/ASP NAME/AS1

copyStdResidue aminoAcids94/HID NAME/HD1

copyStdResidue aminoAcids94/GLU NAME/GL1

copyStdResidue aminoAcids94/HID NAME/HD2

copyStdResidue aminoAcids94/ASP NAME/AS2

copyStdResidue aminoAcids94/MOH NAME/OH1

copyStdResidue metals/.ZN NAME/ZN1

copyStdResidue metals/.ZN NAME/ZN2

#

Create new atom types

#

copyAtomType parm94/O2 NAME/OA

copyAtomType parm94/O2 NAME/OB

copyAtomType parm94/O2 NAME/OC

MTK++ v 0.2.0 83 of 108

M
TK++

(a) 1AMP Model 1

(b) 1AMP Model 2

Figure 40: 1AMP MCPB Models

MTK++ v 0.2.0 84 of 108

M
TK++

periods are replaced by spaces internally

setAtomType NAME/AS1/.OD1 NAME/OA

setAtomType NAME/AS1/.OD2 NAME/OA

setAtomType NAME/GL1/.OE1 NAME/OB

setAtomType NAME/GL1/.OE2 NAME/OB

setAtomType NAME/AS2/.OD1 NAME/OC

setAtomType NAME/AS2/.OD2 NAME/OC

#

write standard library

#

writeLib NAME NAME.xml

#

Open PDB file

#

readPdb NAME NAME_fixed.pdb

Assign S-S bonds

assignDisulfideBonds

Atom type

atomType

Assign bonds, angles, and torsions

assignConnectivity

Add hydrogens

addHs /NAME/

#

Build Cluster

#

Create molecule named CLR

createMolecule CLR

Create HD1-1

createResidue HD1 in CLR

addToResidue /NAME/CLR/HD1 /NAME/1/HID-97 not bb

Create AS2-2 from ASP-179

createResidue AS2 in CLR

addToResidue /NAME/CLR/AS2 /NAME/1/ASP-179 not bb

Create AS1-3 from ASP-117

createResidue AS1 in CLR

MTK++ v 0.2.0 85 of 108

M
TK++

addToResidue /NAME/CLR/AS1 /NAME/1/ASP-117 not bb

Create GL1-4 from GLU-152

createResidue GL1 in CLR

addToResidue /NAME/CLR/GL1 /NAME/1/GLU-152 not bb

Create HD2-5 from HID-256

createResidue HD2 in CLR

addToResidue /NAME/CLR/HD2 /NAME/1/HID-256 not bb

Create ZN1-6 from ZN-501

createResidue ZN1 in CLR

addToResidue /NAME/CLR/ZN1 /NAME/2/.ZN-501/ZN..

Create ZN2-7 from ZN-502

createResidue ZN2 in CLR

addToResidue /NAME/CLR/ZN2 /NAME/3/.ZN-502/ZN..

Create OH1-8 from MOH-935

createResidue OH1 in CLR

addToResidue /NAME/CLR/OH1 /NAME//MOH-935

Methyl terminating groups (Add these after all other residue have been added)

addFragment terminal/CH3 bd /NAME/CLR/HD1-1/.CB. ag /NAME/CLR/HD1-1/.CG. tr /NAME/CLR/HD1-1/.ND1 87.0

addFragment terminal/CH3 bd /NAME/CLR/AS2-2/.CB. ag /NAME/CLR/AS2-2/.CG. tr /NAME/CLR/AS2-2/.OD2 170.0

addFragment terminal/CH3 bd /NAME/CLR/AS1-3/.CB. ag /NAME/CLR/AS1-3/.CG. tr /NAME/CLR/AS1-3/.OD2 200.0

addFragment terminal/CH3 bd /NAME/CLR/GL1-4/.CB. ag /NAME/CLR/GL1-4/.CG. tr /NAME/CLR/GL1-4/.CD. 288.0

addFragment terminal/CH3 bd /NAME/CLR/HD2-5/.CB. ag /NAME/CLR/HD2-5/.CG. tr /NAME/CLR/HD2-5/.ND1 185.0

Create bonds with zinc1

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/HD2/.NE2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/AS1/.OD2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/GL1/.OE2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/OH1/.O..

Create bonds with zinc2

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/HD1/.NE2

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/AS1/.OD1

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/AS2/.OD1

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/OH1/.O..

Atomtype

atomType /NAME/CLR

Assign bonds and angles

assignParameters /NAME/CLR

MTK++ v 0.2.0 86 of 108

M
TK++

Add Bond and Angle Parameters

addBondAndAngleParameters /NAME/CLR NAME

Write parameters file

writeParams NAME NAME_params.xml

Write pdb/mol files (Good idea to view one of these files

before running the Gaussian calc.)

writePdb /NAME/CLR NAME_sidechain.pdb

writeMol /NAME/CLR NAME_sidechain.mol

writeSdf /NAME/CLR NAME_sidechain.sdf

Gaussian options

levelOfTheory B3LYP

basisSet 6-31G*

clusterCharge CLR 0

clusterSpin 1

gaussianNProc 2

gaussianMem 3000MB

Set Gaussian input name --> Optimize and get force constants

gaussianOptAndFC /NAME/CLR NAME_sidechain.com

Exit MCPB

quit

The small model is generated using the following command:

MCPB -i 1AMP_OH_sidechain.bcl \

-l 1AMP_OH_sidechain.bcl.log

15.10.7 Standard Molecule

This step adds information to the final xml library file which can be used to determine if another
pdb file contains a particular active site. The file 1AMP OH addStdMol.bcl is also built by hand
but it is very similar to the sidechain bcl file.

15.10.8 Side Chain Model Optimization/Frequency Calculation

It is assumed that the users of MCPB can use Gaussian to carry out optimization and frequency
calculations. The files 1AMP OH sidechain opt.com and 1AMP OH sidechain fc.com generated by
genMetallFF are used.

15.10.9 Large Model

This step builds a large metal cluster containing all parts of all residues forming the metal cluster.
Residues are capped with acetyl and N-methylamino groups. Where two residues participating in

MTK++ v 0.2.0 87 of 108

M
TK++

the cluster have exactly one residue between them, it is easier to include the extra residue, instead
of replacing it with ACE and NME. An example bcl script is shown below:

Load settings

source 1AMP_OH_settings.bcl

loadParam NAME_params.xml

loadLib NAME.xml

Open PDB file

readPdb NAME NAME_fixed.pdb

Reset name of HIS-256 to HID

setResidueName /NAME/1/HIS-256 to HID

setMoleculeName /NAME//HOH-935 to MOH

setResidueName /NAME//HOH-935 to MOH

Assign S-S bonds

assignDisulfideBonds

Atom type

atomType

Assign bonds, angles, and torsions

assignConnectivity

Add hydrogens

addHs /NAME

#

Cluster

#

Create molecule named CLR

createMolecule CLR

setMaxFileID /NAME/CLR /NAME/1

Create ACE-1 from GLY-96

createResidue ACE in CLR

addToResidue /NAME/CLR/ACE-1 /NAME/1/GLY-96/.CA.

setAtomName /NAME/CLR/ACE-1/.CA. to .CH3

MTK++ v 0.2.0 88 of 108

M
TK++

addToResidue /NAME/CLR/ACE-1 /NAME/1/GLY-96/.C..

addToResidue /NAME/CLR/ACE-1 /NAME/1/GLY-96/.O..

Create HD1-2

createResidue HD1 in CLR

addToResidue /NAME/CLR/HD1 /NAME/1/HID-97

Create NME-3 from LEU-98

createResidue NME in CLR

addToResidue /NAME/CLR/NME-3 /NAME/1/LEU-98/.N..

addToResidue /NAME/CLR/NME-3 /NAME/1/LEU-98/.CA.

setAtomName /NAME/CLR/NME-3/.CA. to .CH3

Create ACE-4 from LEU-178

createResidue ACE in CLR

addToResidue /NAME/CLR/ACE-4 /NAME/1/LEU-178/.CA.

setAtomName /NAME/CLR/ACE-4/.CA. to .CH3

addToResidue /NAME/CLR/ACE-4 /NAME/1/LEU-178/.C..

addToResidue /NAME/CLR/ACE-4 /NAME/1/LEU-178/.O..

Create AS2-5 from ASP-179

createResidue AS2 in CLR

addToResidue /NAME/CLR/AS2 /NAME/1/ASP-179

Create NME-6 from VAL-180

createResidue NME in CLR

addToResidue /NAME/CLR/NME-6 /NAME/1/MET-180/.N..

addToResidue /NAME/CLR/NME-6 /NAME/1/MET-180/.CA.

setAtomName /NAME/CLR/NME-6/.CA. to .CH3

Create ACE-7 from ASP-116

createResidue ACE in CLR

addToResidue /NAME/CLR/ACE-7 /NAME/1/ASP-116/.CA.

setAtomName /NAME/CLR/ACE-7/.CA. to .CH3

addToResidue /NAME/CLR/ACE-7 /NAME/1/ASP-116/.C..

addToResidue /NAME/CLR/ACE-7 /NAME/1/ASP-116/.O..

Create AS1-8 from ASP-117

createResidue AS1 in CLR

addToResidue /NAME/CLR/AS1 /NAME/1/ASP-117

Create NME-9 from ASP-118

MTK++ v 0.2.0 89 of 108

M
TK++

createResidue NME in CLR

addToResidue /NAME/CLR/NME-9 /NAME/1/ASP-118/.N..

addToResidue /NAME/CLR/NME-9 /NAME/1/ASP-118/.CA.

setAtomName /NAME/CLR/NME-9/.CA. to .CH3

Create ACE-10 from GLU-151

createResidue ACE in CLR

addToResidue /NAME/CLR/ACE-10 /NAME/1/GLU-151/.CA.

setAtomName /NAME/CLR/ACE-10/.CA. to .CH3

addToResidue /NAME/CLR/ACE-10 /NAME/1/GLU-151/.C..

addToResidue /NAME/CLR/ACE-10 /NAME/1/GLU-151/.O..

Create GL1-11 from GLU-152

createResidue GL1 in CLR

addToResidue /NAME/CLR/GL1 /NAME/1/GLU-152

Create NME-12 from VAL-153

createResidue NME in CLR

addToResidue /NAME/CLR/NME-12 /NAME/1/VAL-153/.N..

addToResidue /NAME/CLR/NME-12 /NAME/1/VAL-153/.CA.

setAtomName /NAME/CLR/NME-12/.CA. to .CH3

Create ACE-13 from ILE-255

createResidue ACE in CLR

addToResidue /NAME/CLR/ACE-13 /NAME/1/ILE-255/.CA.

setAtomName /NAME/CLR/ACE-13/.CA. to .CH3

addToResidue /NAME/CLR/ACE-13 /NAME/1/ILE-255/.C..

addToResidue /NAME/CLR/ACE-13 /NAME/1/ILE-255/.O..

Create HD2-14 from HID-256

createResidue HD2 in CLR

addToResidue /NAME/CLR/HD2 /NAME/1/HID-256

Create NME-15 from THR-257

createResidue NME in CLR

addToResidue /NAME/CLR/NME-15 /NAME/1/THR-257/.N..

addToResidue /NAME/CLR/NME-15 /NAME/1/THR-257/.CA.

setAtomName /NAME/CLR/NME-15/.CA. to .CH3

Create ZN1-16 from ZN-501

createResidue ZN1 in CLR

addToResidue /NAME/CLR/ZN1 /NAME/2/.ZN-501/ZN..

MTK++ v 0.2.0 90 of 108

M
TK++

Create ZN2-17 from ZN-502

createResidue ZN2 in CLR

addToResidue /NAME/CLR/ZN2 /NAME/3/.ZN-502/ZN..

Create OH1-18 from HOH-935

createResidue OH1 in CLR

addToResidue /NAME/CLR/OH1 /NAME//MOH-935

Create bonds with zinc

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/HD2/.NE2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/AS1/.OD2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/GL1/.OE2

createBond /NAME/CLR/ZN1/ZN.. /NAME/CLR/OH1/.O..

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/HD1/.NE2

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/AS1/.OD1

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/AS2/.OD1

createBond /NAME/CLR/ZN2/ZN.. /NAME/CLR/OH1/.O..

Atomtype

atomType /NAME/CLR

Add Hs

addHs /NAME/CLR

Write pdb/mol files

writePdb /NAME/CLR NAME_large.pdb

writeMol /NAME/CLR NAME_large.mol

writeSdf /NAME/CLR NAME_large.sdf

Gaussian options

levelOfTheory B3LYP

basisSet 6-31G*

clusterCharge CLR 0

clusterSpin 1

gaussianNProc 2

gaussianMem 3000MB

setMKRadii zn 1.1

Set Gaussian input name

gaussianCharges /NAME/CLR NAME_large.com

MTK++ v 0.2.0 91 of 108

M
TK++

Exit MCPB

quit

15.10.10 Large Model Charge Calculation

Once the large model is created the partial charges can be calculated using Gaussian and the
1AMP OH large mk.com file.

15.10.11 RESP

Once the large model Gaussian calculation is complete the RESP calculations can be carried out.
The genMetalFF script produces four files relating to the different charge models. Each of these
supplies different constraints to RESP.

MCPB -i 1AMP_OH_large_mk1.bcl \

-l 1AMP_OH_large_mk1.bcl.log

mv 1AMP_OH_large_respAdds 1AMP_OH_large_respAdds1

sh ./getCharges.sh 1

15.10.12 Create XML Libraries

Once RESP is finished then the final xml files (ChgMod A-D) can be generated:

MCPB -i 1AMP_OH_large_chg1.bcl \

-l 1AMP_OH_large_chg1.bcl.log

15.10.13 Create FF Modification Files

This step requires the output from the frequency calculation of the sidechain model. You will need
to convert the chk file into a formatted checkpoint file. The following command will produce an
MTK++ formatted xml file containing the Seminario derived bond and angle parameters.

MCPB -i 1AMP_OH_sidechain_fc_sem.bcl \

-l 1AMP_OH_sidechain_fc_sem.bcl.log

15.10.14 Create AMBER prep and frcmod Files

To use the MCPB generated parameters and charges the MTK++ file must be converted to some-
thing that AMBER utilities can use. The following command creates an frcmod file and a prep file
to be used with leap.

MCPB -i 1AMP_OH_toAmberFormats_sem.bcl \

-l 1AMP_OH_toAmberFormats_sem.bcl.log

MTK++ v 0.2.0 92 of 108

M
TK++

15.10.15 Control Script Syntax

• addBondAndAngleParameters <selection> <group name>

Add bond and angle parameters if missing

• addFragment <fragment> bd <atom1> ag <atom2> tr <atom3>

Add Fragment to an atom.

syntax: addFragment 6MemRings/6CH bd /col/Mol//34 ag /col/Mol//27 tr /col/Mol//9 180.0

• addHs <selection>

Add Hydrogens to the selection

• addStdMol <molecule selection> <group>

Add standard molecule to lib file

• addToResidue <residue selection 1> <residue selection 2> and/not <bb>

Adds atom from one residue into another. bb values:

– bb heavy == backbone [ca, n, c, o]

– bb == backbone [ca, h, ha, n, nh, c, o]

– bbb == backbone [ca, h, ha, n, nh, c, o, cb]

syntax: addToResidue /1FWJ/CLR/H11-5 /1FWJ/7/HIS-104 not bb

• appendResidue <residue selection> <atom selection>

Adds selected atom into selection residue.

syntax: appendResidue /1FEE/cuCYM4/CY1 /1FEE/1/CYS-12/.CB.

• assignConnectivity

Assigns all bonds, angles, torsions and impropers in collection.

• assignDisulfideBonds

Assigns all disulfide bonds (Needs to be carried out before atom typing).

• assignParameters <selection>

Assigns bond/angle/torsion/improper parameters.

• assignStdFeatures <selection>

Assigns standard features to molecule.

• atomType

Assigns atom types in the collection.

MTK++ v 0.2.0 93 of 108

M
TK++

• basisSet <options>

Set Gaussian Basis Set. options:

– Basis set Name. e.g. 6-31G*

– Gen Basis with a supplied basis set file. e.g. GEN.6D.7F bs.txt.

• capResidue <atom selection> <ACE or NME>

Cap residue residues with NME or ACE.

syntax: capResidue /1FEE/cuCYM4/CY1/.N.. ACE

• clusterCharge <cluster> <charge>

Set cluster charge for Gaussian calculation.

• clusterSpin <cluster> <spin>

Set cluster spin state for Gaussian calculation.

• copyAtomType <existing atom type> <new atom type>

Copy atom type details into a new atom type.

syntax: copyAtomType parm94/NB 1CA2/NX

• copyStdResidue <existing residue> <new residue>

Copy residue to create a new residue.

syntax: copyStdResidue aminoAcids94/HIS myLib/HS1

• createBond <atom selection 1> <atom selection 2>

Create bond.

• createMolecule <molecule name>

Create molecule.

• createResidue <residue name> in <molecule selection>

Create residue within a molecule.

• createStdGroup <name>

Create standard group.

• findMetalCenters

Find all metal centers in the collection.

• g03Charges <molecule selection> <filename>

Generate a Gaussian input file for partial-charge computation.

MTK++ v 0.2.0 94 of 108

M
TK++

• g03Mem <memory requirement>

Set amount of memory requested for g03.

• g03MoldenFormat

Request Gaussian log files formatted for viewing in Molden (adds the GFINPUT and IOP(6/7=3)
keywords).

• g03nProc <number>

Set number of processors requested for g03.

• g03OptAndFC <molecule selection> <filename>

Generate Gaussian input files for optimisation and force constants.

• g03Verbosity <level>

Set the verbosity of Gaussian output ([T]erse, [N]ormal, [P]rolix).

• levelOfTheory <theory>

Set Gaussian Theory Level.

• listFragments <library name>

List available fragments in a particular library.

• loadLib <library file>

Loads AMBER library files into MCPB.

• loadParam <parameter file>

Loads AMBER Parameters into MCPB.

• modRedundant <filename>

Add modReduntant definitions to gaussian input file.

• nmodeMatch <filename>

Compare nMode and Gaussian Normal Modes.

• optimizePolarHs

Optimize polar hydrogens in a collection.

• print <selection>

Print to screen details of structure.

• printAtomTypes

Print Available atom types.

MTK++ v 0.2.0 95 of 108

M
TK++

• pseudoPotentials <filename>

Add pseudo potential definitions to gaussian input file.

• quit

Exit MCPB.

• readFormattedChkPtFile <fchk file>

Read Formatted Checkpoint file.

• readG03Output <gaussian output file>

Read G03 Output.

• readMolZmatMapping <mapping file>

Read Molecule to Z-Matrix mapping file

• readNMode <molecule selection> <nmode output file>

Read frequencies from nmode.

• readNModeVectors <molecule selection> <nmode vecs file> <molden filename>

Read eigenvalues and eigenvectors from nmode vecs file.

• readPdb <object name> <pdb file>

Reads a PDB file.

• readRespCharges <molecule selection> <resp chg file>

Read RESP charges into molecule.

• readSdf <object name> <filename>

Read sd file.

• renumber

Renumbers atoms and residues in the collection.

• respgenAdditions <groupname> <filename> <bb>

Add info to respgen files. bb Definitions:

– 0 No restraints

– 1 Heavy Atoms in Backbone (bb heavy, [ca, n, c, o]) set to parm94 values

– 2 Atoms in Backbone (bb, [ca, h, ha, n, nh, c, o]) set to parm94 values

– 3 Atoms in Backbone plus CB (bbb, [ca, h, ha, n, nh, c, o, cb]) set to parm94 values

MTK++ v 0.2.0 96 of 108

M
TK++

• set <variable name> <value>

Set variable.

• setAtomName <atom selection> to <atom name>

Set atom name.

syntax: setAtomName /1CA2/znCLR/ACE-1/.CA. to .CH3

• setAtomType <atom selection> <atom type>

Set atom type.

syntax: setAtomType myLib/HS1/.NE2 1CA2/NX

• setFormalCharge <atom selection> <value>

Set Formal Charge on atom.

• setLoggingLevel <value>

Set the verbosity of error/warning/info messages. Values:

– 1 - Error

– 2 - Warning

– 3 - Debug

– 4 - Info

• setMaxFileID <molecule selection 1> <molecule selection 2>

Set the id of a new atom in the collection.

• setMKRadii <element> <value>

Set Merz-Kollman radii for element.

• setResidueName <residue selection> to <3 Letter code>

Set residue name.

syntax: setResidueName /1CA2/1/HIS-119 to HIE

• source <file name>

Sources a global file.

• updateForceConstants <molecule selection> <group> <X> <Y>

Determine force constants and add them to parm file. X Values:

– 0 Do not update bonds and angle equilibrium values

– 1 Do update bonds and angle equilibrium values (req)

MTK++ v 0.2.0 97 of 108

M
TK++

Y Values:

– 0 Seminario Method

– 1 Z-matrix Method

• updateFrequencies <molecule selection> <value>

Scale frequencies.

• updateRespCharges <molecule selection> <group>

Add RESP charge to lib file.

• writeData <filename>

Write contents.

• writeFrcmodFile <frcmod file> <object>

Writes AMBER Parameters.

• writeLeap <name> <pdb file>

Write the metal center bonding info for leap.

• writeLib <group name> <file name>

Write standard library.

• writeMol <molecule selection> <file name>

Write mol file.

• writeParams <group name> <filename>

Write all new parameters.

• writePdb <selection> <pdb file>

Write pdb file.

• writePrepFile <prep file> <object>

Writes AMBER prep file.

• writePrmtop <coord file> <prmtop file>

Write prmtop and coordinate files.

• writeSdf <selection> <file name>

Write sd file.

• writeState <file name>

Write state xml file.

MTK++ v 0.2.0 98 of 108

M
TK++

References

[1] The Apache Project. Xerces-C++ Parser. http://xml.apache.org/xerces-c/ (accessed Oct 1,
2005).

[2] A. M. Wollacott. Computational studies of the applicability of semiempirical quantum me-
chanical methods to study protein structure. PhD thesis, The Pennsylvania State University,
2005.

[3] R. J. F. Branco, P. A. Fernandes, and M. J. Ramos. Molecular dynamics simulations of the
enzyme cu, zn superoxide dismutase. J. Phys. Chem. B, 110(33):16754–16762, 2006.

[4] T. Wang and J. J. Zhou. 3DFS: A new 3D flexible searching system for use in drug design.
J. Chem. Inf. Comput. Sci., 38(1):71–77, 1998.

[5] P. Willett. Searching techniques for databases of two- and three-dimensional chemical struc-
tures. J. Med. Chem., 48(13):4183–4199, 2005.

[6] R. Diestel. Graph theory. Springer, Berlin, 2005.

[7] P. Labute. On the perception of molecules from 3D atomic coordinates. J. Chem. Inf. Model.,
45(2):215–221, 2005.

[8] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A 2nd Generation Force-Field
for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. J. Am. Chem. Soc.,
117(19):5179–5197, 1995.

[9] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field
for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.,
118(9):2309–2309, 1996.

[10] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods. The AMBER biomolecular simulation programs.
J. Comput. Chem., 26(16):1668–1688, 2005.

[11] D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke,
R. Luo, K. M. Merz Jr., D. A. Pearlman, M. M. Crowley, R. C. R.C. Walker, W. W. Zhang,
B. Wang, S. Hayik, A. Roitberg, G. Seabra, K. F. Wong, F. Paesani, X. Wu, S. Brozell,
V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. H.
Mathews, C. Schafmeister, W. S. Ross, and P. A. Kollman. AMBER 9, 2006.

[12] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM - a Program for Macromolecular Energy, Minimization, and Dynamics Calcula-
tions. J. Comput. Chem., 4(2):187–217, 1983.

MTK++ v 0.2.0 99 of 108

M
TK++

[13] T. A. Halgren. Merck molecular force field.5. Extension of MMFF94 using experimental
data, additional computational data, and empirical rules. J. Comput. Chem., 17(5-6):616–
641, 1996.

[14] T. A. Halgren. Merck molecular force field.3. Molecular geometries and vibrational frequencies
for MMFF94. J. Comput. Chem., 17(5-6):553–586, 1996.

[15] T. A. Halgren. Merck molecular force field.2. MMFF94 van der waals and electrostatic
parameters for intermolecular interactions. J. Comput. Chem., 17(5-6):520–552, 1996.

[16] T. A. Halgren. Merck molecular force field.1. Basis, form, scope, parameterization, and
performance of MMFF94. J. Comput. Chem., 17(5-6):490–519, 1996.

[17] T. A. Halgren. Representation of van der Waals (vdW) Interactions in Molecular Mechanics
Force-Fields - Potential Form, Combination Rules, and vdW parameters. J. Am. Chem. Soc.,
114(20):7827–7843, 1992.

[18] T. A. Halgren and R. B. Nachbar. Merck molecular force field.4. Conformational energies
and geometries for MMFF94. J. Comput. Chem., 17(5-6):587–615, 1996.

[19] T. A. Halgren. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely
available force fields for conformational energies and for intermolecular-interaction energies
and geometries. J. Comput. Chem., 20(7):730–748, 1999.

[20] T. A. Halgren. MMFF VI. MMFF94S Option for Energy Minimization Studies. J. Comput.
Chem., 20(7):720–729, 1999.

[21] W. L. Jorgensen and J. Tiradorives. The OPLS Potential Functions for Proteins - Energy
Minimizations for Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc., 110(6):1657–
1666, 1988.

[22] N. L. Allinger, Y. H. Yuh, and J. H. Lii. Molecular Mechanics - the MM3 force-field for
Hydrocarbons.1. J. Am. Chem. Soc., 111(23):8551–8566, 1989.

[23] E. C. Meng and R. A. Lewis. Determination of Molecular Topology and Atomic Hybridization
States from Heavy-Atom Coordinates. J. Comput. Chem., 12(7):891–898, 1991.

[24] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. Tables of
Bond Lengths Determined by X-Ray and Neutron-Diffraction.1. Bond Lengths in Organic-
Compounds. J. Chem. Soc., Perkin Trans. 2, (12):S1–S19, 1987.

[25] J. C. Baber and E. E. Hodgkin. Automatic Assignment of Chemical Connectivity to Organic-
Molecules in the Cambridge Structural Database. J. Chem. Inf. Comput. Sci., 32(5):401–406,
1992.

MTK++ v 0.2.0 100 of 108

M
TK++

[26] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, and R. Taylor. Tables of
Bond Lengths Determined by X-Ray and Neutron-Diffraction.2. Organometallic Compounds
and Co-Ordination Complexes of the D-Block and F-Block Metals. J. Chem. Soc., Dalton
Trans., (12):S1–S83, 1989.

[27] M. Hendlich, F. Rippmann, and G. Barnickel. BALI: Automatic assignment of bond and
atom types for protein ligands in the Brookhaven Protein Databank. J. Chem. Inf. Comput.
Sci., 37(4):774–778, 1997.

[28] J. M. Wang, W. Wang, P. A. Kollman, and D. A. Case. Automatic atom type and bond type
perception in molecular mechanical calculations. J. Mol. Graphics Modell., 25(2):247–260,
2006.

[29] B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. Ring Perception - A New Algorithm for
Directly Finding the Smallest Set of Smallest Rings from a Connection Table. J. Chem. Inf.
Comput. Sci., 33(5):657–662, 1993.

[30] B. L. Roos-kozel and W. L. Jorgensen. Computer-Assisted Mechanistic Evaluation of Organic-
Reactions.2. Perception of Rings, Aromaticity, and Tautomers. J. Chem. Inf. Comput. Sci.,
21(2):101–111, 1981.

[31] J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and
testing of a general amber force field. J. Comput. Chem., 25(9):1157–1174, 2004.

[32] M. Lipton and W. C. Still. The multiple minimum problem in molecular modeling - tree
searching internal coordinate conformational space. J. Comput. Chem., 9(4):343–355, 1988.

[33] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

[34] Wilson T. Willett, P. and S. F. Reddaway. Atom-by-atom searching using massive parallelism.
implementation of the ullmann subgraph isomorphism algorithm on the distributed array
processor. J. Chem. Inf. Model., 31(2):225–233, 1991.

[35] A. R. Leach. Molecular modelling: principles and applications. Prentice Hall, Harlow, Eng-
land; New York, 2nd edition, 2001.

[36] E. J. Barker, D. Buttar, D. A. Cosgrove, E. J. Gardiner, P. Kitts, P. Willett, and V. J. Gillet.
Scaffold hopping using clique detection applied to reduced graphs. J. Chem. Inf. Model.,
46(2):503–511, 2006.

[37] S. K. Kearsley. On the Orthogonal Transformation Used for Structural Comparisons. Acta
Crystallogr., Sect. A: Found. Crystallogr., 45:208–210, 1989.

[38] W. Kabsch. Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr., Sect.
A: Found. Crystallogr., 32:922–923, 1976.

MTK++ v 0.2.0 101 of 108

M
TK++

[39] W. Kabsch. Discussion of Solution for Best Rotation to Relate 2 Sets of Vectors. Acta
Crystallogr., Sect. A: Found. Crystallogr., 34:827–828, 1978.

[40] G. Carta, V. Onnis, A. J. S. Knox, D. Fayne, and D. G. Lloyd. Permuting input for more
effective sampling of 3D conformer space. J. Comput.-Aided Mol. Des., 20(3):179–190, 2006.

[41] G. M. Ullmann, E. W. Knapp, and N. M. Kostic. Computational simulation and analysis of
dynamic association between plastocyanin and cytochrome f. consequences for the electron-
transfer reaction. J. Am. Chem. Soc., 119(1):42–52, 1997.

[42] J. O. A. De Kerpel and U. Ryde. Protein strain in blue copper proteins studied by free energy
perturbations. Proteins: Struct. Funct. Genet., 36(2):157–174, 1999.

[43] M. H. M. Olsson and U. Ryde. The influence of axial ligands on the reduction potential of
blue copper proteins. J. Biol. Inorg. Chem., 4(5):654–663, 1999.

[44] R. Remenyi and P. Comba. A new general molecular mechanics force field for the oxidized
form fo blue coppper proteins. J. Inorg. Biochem., 86(1):397–397, 2001.

[45] P. Comba, A. Lledos, F. Maseras, and R. Remenyi. Hybrid quantum mechanics/molecular
mechanics studies of the active site of the blue copper proteins amicyanin and rusticyanin.
Inorg. Chim. Acta, 324(1-2):21–26, 2001.

[46] P. Comba and R. Remenyi. A new molecular mechanics force field for the oxidized form of
blue copper proteins. J. Comput. Chem., 23(7):697–705, 2002.

[47] D. Suarez, N. Diaz, and K. M. Merz Jr. Ureases: Quantum chemical calculations on cluster
models. J. Am. Chem. Soc., 125(50):15324–15337, 2003.

[48] G. Estiu and K. M. Merz Jr. Enzymatic catalysis of urea decomposition: Elimination or
hydrolysis? J. Am. Chem. Soc., 126(38):11832–11842, 2004.

[49] G. Estiu and K. M. Merz Jr. Catalyzed decomposition of urea. Molecular dynamics simula-
tions of the binding of urea to urease. Biochemistry, 45(14):4429–4443, 2006.

[50] G. Estiu, D. Suarez, and K. M. Merz Jr. Quantum mechanical and molecular dynamics
simulations of ureases and Zn beta-lactamases. J. Comput. Chem., 27(12):1240–1262, 2006.

[51] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers,
O. Kennard, T. Shimanouchi, and M. Tasumi. Protein Data Bank - Computer-Based Archival
File for Macromolecular Structures. J. Mol. Biol., 112(3):535–542, 1977.

[52] R. D. Hancock. Molecular Mechanics Calculations as a Tool in Coordination Chemistry.
Prog. Inorg. Chem., 37:187–291, 1989.

[53] S. C. Hoops, K. W. Anderson, and K. M. Merz Jr. Force-Field Design for Metalloproteins.
J. Am. Chem. Soc., 113(22):8262–8270, 1991.

MTK++ v 0.2.0 102 of 108

M
TK++

[54] Cieplak P. Cornell W. Bayly, C. I. and P. A. Kollman. A well-behaved electrostatic potential
based method using charge restraints for deriving atomic charges: the resp model. J. Phys.
Chem., 97(40):10269–10280, 1993.

[55] J. B. Li, T. H. Zhu, C. J. Cramer, and D. G. Truhlar. New class IV charge model for extracting
accurate partial charges from wave functions. J. Phys. Chem. A, 102(10):1820–1831, 1998.

[56] R. H. Stote and M. Karplus. Zinc binding in proteins and solution: a simple but accurate
nonbonded representation. Proteins, 23(1):12–31, 1995.

[57] D. V. Sakharov and C. Lim. Zn protein simulations including charge transfer and local
polarization effects. J. Am. Chem. Soc., 127(13):4921–4929, 2005.

[58] J. Aqvist and A. Warshel. Computer simulation of the initial proton transfer step in human
carbonic anhydrase i. J. Mol. Biol., 224(1):7–14, 1992.

[59] Y. P. Pang, K. Xu, J. E. Yazal, and F. G. Prendergas. Successful molecular dynamics
simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach.
Protein Sci., 9(10):1857–65, 2000.

[60] Y. P. Pang. Successful molecular dynamics simulation of two zinc complexes bridged by a
hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins, 45(3):183–
9, 2001.

[61] A. Vedani and D. W. Huhta. A New Force-Field for Modeling Metalloproteins. J. Am. Chem.
Soc., 112(12):4759–4767, 1990.

[62] N. Gresh, J. P. Piquemal, and M. Krauss. Representation of Zn(II) complexes in polarizable
molecular mechanics. Further refinements of the electrostatic and short-range contributions.
Comparisons with parallel ab initio computations. J. Comput. Chem., 26(11):1113–30, 2005.

[63] N. Gresh. Development, validation, and applications of anisotropic polarizable molecular
mechanics to study ligand and drug-receptor interactions. Curr. Pharm. Des., 12(17):2121–
58, 2006.

[64] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. UFF, a Full
Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J.
Am. Chem. Soc., 114(25):10024–10035, 1992.

[65] A. K. Rappe, K. S. Colwell, and C. J. Casewit. Application of a Universal Force-Field to
Metal-Complexes. Inorg. Chem., 32(16):3438–3450, 1993.

[66] J. M. Sirovatka, A. K. Rappe, and R. G. Finke. Molecular mechanics studies of coenzyme B-
12 complexes with constrained Co-N(axial-base) bond lengths: introduction of the universal
force field (UFF) to coenzyme B-12 chemistry and its use to probe the plausibility of an
axial-base-induced, ground-state corrin butterfly conformational steric effect. Inorg. Chim.
Acta, 300:545–555, 2000.

MTK++ v 0.2.0 103 of 108

M
TK++

[67] P. Brandt, T. Norrby, E. Akermark, and P. O. Norrby. Molecular mechanics (MM3*) param-
eters for ruthenium(ii)-polypyridyl complexes. Inorg. Chem., 37(16):4120–4127, 1998.

[68] H. M. Marques and K. L. Brown. A Molecular Mechanics Force-Field for the Cobalt Corri-
noids. J. Mol. Struct. (Theochem), 340:97–124, 1995.

[69] K. L. Brown, X. Zou, and H. M. Marques. NMR-restrained molecular modeling of cobalt
corrinoids: cyanocobalamin (vitamin B-12) and methylcobalt corrinoids. J. Mol. Struct.
(Theochem), 453:209–224, 1998.

[70] H. M. Marques and K. L. Brown. The structure of cobalt corrinoids based on molecular
mechanics and NOE-restrained molecular mechanics and dynamics simulations. Coord. Chem.
Rev., 192:127–153, 1999.

[71] H. M. Marques, B. Ngoma, T. J. Egan, and K. L. Brown. Parameters for the AMBER
force field for the molecular mechanics modeling of the cobalt corrinoids. J. Mol. Struct.,
561(1-3):71–91, 2001.

[72] J. Aqvist and A. Warshel. Free-Energy Relationships in Metalloenzyme-Catalyzed Reactions
- Calculations of the Effects of Metal-Ion Substitutions in Staphylococcal Nuclease. J. Am.
Chem. Soc., 112(8):2860–2868, 1990.

[73] U. Ryde. Molecular-Dynamics Simulations of Alcohol-Dehydrogenase with a 4-Coordinate or
5-Coordinate Catalytic Zinc Ion. Proteins: Struct. Funct. Genet., 21(1):40–56, 1995.

[74] U. Ryde. On the Role of Glu-68 in Alcohol-Dehydrogenase. Protein Sci., 4(6):1124–1132,
1995.

[75] U. Ryde. Carboxylate binding modes in zinc proteins: A theoretical study. Biophys. J.,
77(5):2777–2787, 1999.

[76] R. D. Hancock, J. S. Weaving, and H. M. Marques. A Molecular Mechanics Model of the
Metalloporphyrins - the Role of Steric Hindrance in Discrimination in Favor of Dioxygen
Relative to Carbon-Monoxide in Some Heme Models. J. Chem. Soc., Chem. Commun.,
(16):1176–1178, 1989.

[77] H. M. Marques and I. Cukrowski. Molecular mechanics modelling of porphyrins. using ar-
tificial neural networks to develop metal parameters for four-coordinate metalloporphyrins.
Phys. Chem. Chem. Phys., 4(23):5878–5887, 2002.

[78] H. M. Marques and K. L. Brown. Molecular mechanics and molecular dynamics simulations
of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord. Chem. Rev.,
225(1-2):123–158, 2002.

[79] C. E. Skopec, J. M. Robinson, I. Cukrowski, and H. M. Marques. Using artificial neural
networks to develop molecular mechanics parameters for the modelling of metalloporphyrins.

MTK++ v 0.2.0 104 of 108

M
TK++

III. five coordinate Zn(II) porphyrins and the metalloprophyrins of the early 3d metals. J.
Mol. Struct., 738(1-3):67–78, 2005.

[80] C. E. Skopec, I. Cukrowski, and H. M. Marques. Using artificial neural networks to develop
molecular mechanics parameters for the modelling of metalloporphyrins: Part IV. Five-, six-
coordinate metalloporphyrins of Mn, Co, Ni and Cu. J. Mol. Struct., 783(1-3):21–33, 2006.

[81] P. O. Norrby and T. Liljefors. Automated molecular mechanics parameterization with si-
multaneous utilization of experimental and quantum mechanical data. J. Comput. Chem.,
19(10):1146–1166, 1998.

[82] P. O. Norrby and P. Brandt. Deriving force field parameters for coordination complexes.
Coord. Chem. Rev., 212:79–109, 2001.

[83] K. M. Merz Jr. CO2 Binding to Human Carbonic Anhydrase-II. J. Am. Chem. Soc.,
113(2):406–411, 1991.

[84] K. M. Merz Jr., M. A. Murcko, and P. A. Kollman. Inhibition of Carbonic-Anhydrase. J.
Am. Chem. Soc., 113(12):4484–4490, 1991.

[85] N. Diaz, D. Suarez, and K. M. Merz Jr. Hydration of zinc ions: theoretical study
of [Zn(H2O)(4)](H2O)(8)(2+) and [Zn(H2O)(6)](H2O)(6)(2+). Chem. Phys. Lett., 326(3-
4):288–292, 2000.

[86] N. Diaz, D. Suarez, and K. M. M. Merz Jr. Zinc metallo-beta-lactamase from Bacteroides
fragilis: A quantum chemical study on model systems of the active site. J. Am. Chem. Soc.,
122(17):4197–4208, 2000.

[87] N. Diaz, D. Suarez, and K. M. Merz Jr. Molecular dynamics simulations of the mononuclear
zinc-beta-lactamase from bacillus cereus complexed with benzylpenicillin and a quantum
chemical study of the reaction mechanism. J. Am. Chem. Soc., 123(40):9867–9879, 2001.

[88] N. Diaz, D. Suarez, T. L. Sordo, and K. M. Merz Jr. A theoretical study of the aminoly-
sis reaction of lysine 199 of human serum albumin with benzylpenicillin: Consequences for
immunochemistry of penicillins. J. Am. Chem. Soc., 123(31):7574–7583, 2001.

[89] N. Diaz, D. Suarez, T. L. Sordo, and K. M. Merz Jr. Acylation of class a beta-lactamases by
penicillins: A theoretical examination of the role of serine 130 and the beta-lactam carboxylate
group. J. Phys. Chem. B, 105(45):11302–11313, 2001.

[90] D. Suarez and K. M. Merz Jr. Molecular dynamics simulations of the mononuclear zinc-beta-
lactamase from Bacillus cereus. J. Am. Chem. Soc., 123(16):3759–3770, 2001.

[91] N. Diaz, T. L. Sordo, K. M. Merz Jr., and D. Suarez. Insights into the acylation mecha-
nism of class A beta-lactamases from molecular dynamics simulations of the TEM-1 enzyme
complexed with benzylpenicillin. J. Am. Chem. Soc., 125(3):672–684, 2003.

MTK++ v 0.2.0 105 of 108

M
TK++

[92] N. Diaz, D. Suarez, K. M. Merz Jr., and T. L. Sordo. Molecular dynamics simulations of the
TEM-1,beta-lactamase complexed with cephalothin. J. Med. Chem., 48(3):780–791, 2005.

[93] Martin B. Peters, Yue Yang, Bing Wang, László Füsti-Molnár, Michael N. Weaver, and
Kenneth M. Merz Jr. Structural Survey of Zinc Containing Proteins and the Development of
the Zinc AMBER Force Field (ZAFF). J Chem Theory Comput, 6(9):2935–2947, Sep 2010.

[94] D. Suarez, E. N. Brothers, and K. M. Merz Jr. Insights into the structure and dynamics of the
dinuclear zinc beta-lactamase site from Bacteroides fragilis. Biochemistry, 41(21):6615–6630,
2002.

[95] D. Suarez, N. Diaz, and K. M. Merz Jr. Molecular dynamics simulations of the dinuclear
zinc-beta-lactamase from bacteroides fragilis complexed with imipenem. J. Comput. Chem.,
23(16):1587–1600, 2002.

[96] G. Cui, B. Wang, and K. M. Merz Jr. Computational studies of the farnesyltransferase
ternary complex - Part I: Substrate binding. Biochemistry, 44(50):16513–16523, 2005.

[97] Daniel J Sindhikara, Adrian E Roitberg, and Kenneth M Merz. Apo and nickel-bound forms
of the pyrococcus horikoshii species of the metalloregulatory protein: Nikr characterized by
molecular dynamics simulations. Biochemistry, 48(50):12024–33, Dec 2009.

[98] J. R. Collins, D. L. Camper, and G. H. Loew. Valproic Acid Metabolism by Cytochrome-P450
- a Theoretical-Study of Stereoelectronic Modulators of Product Distribution. J. Am. Chem.
Soc., 113(7):2736–2743, 1991.

[99] J. R. Collins, P. Du, and G. H. Loew. Molecular-Dynamics Simulations of the Resting and
Hydrogen Peroxide-Bound States of Cytochrome-C Peroxidase. Biochemistry, 31(45):11166–
11174, 1992.

[100] S. J. Yao, J. P. Plastaras, and L. G. Marzilli. A Molecular Mechanics Amber-Type Force-Field
for Modeling Platinum Complexes of Guanine Derivatives. Inorg. Chem., 33(26):6061–6077,
1994.

[101] M. M. Harding. The geometry of metal-ligand interactions relevant to proteins. Acta Crys-
tallogr., Sect. D: Biol. Crystallogr., 55:1432–43, 1999.

[102] M. M. Harding. The geometry of metal-ligand interactions relevant to proteins. II. angles at
the metal atom, additional weak metal-donor interactions. Acta Crystallogr., Sect. D: Biol.
Crystallogr., 56:857–67, 2000.

[103] M. M. Harding. Geometry of metal-ligand interactions in proteins. Acta Crystallogr., Sect.
D: Biol. Crystallogr., 57:401–11, 2001.

[104] M. M. Harding. Metal-ligand geometry relevant to proteins and in proteins: sodium and
potassium. Acta Crystallogr., Sect. D: Biol. Crystallogr., 58:872–4, 2002.

MTK++ v 0.2.0 106 of 108

M
TK++

[105] M. M. Harding. The architecture of metal coordination groups in proteins. Acta Crystallogr.,
Sect. D: Biol. Crystallogr., 60:849–59, 2004.

[106] M. M. Harding. Small revisions to predicted distances around metal sites in proteins. Acta
Crystallogr., Sect. D: Biol. Crystallogr., 62:678–82, 2006.

[107] J. Aqvist. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simula-
tions. J. Phys. Chem., 94(21):8021–8024, 1990.

[108] A. Bondi. van Der Waals Volumes + Radii. J. Phys. Chem., 68(3):441–451, 1964.

[109] S. S. Batsanov. van der Waals radii of elements. Inorg. Mater., 37(9):871–885, 2001.

[110] S. S. Batsanov. The determination of van der Waals radii from the structural characteristics
of metals. Russ. J. Phys. Chem., 74(7):1144–1147, 2000.

[111] D. Asthagiri, L. R. Pratt, M. E. Paulaitis, and S. B. Rempe. Hydration structure and free
energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row
metals. J. Am. Chem. Soc., 126(4):1285–1289, 2004.

[112] C. S. Babu and C. Lim. Empirical force fields for biologically active divalent metal cations
in water. J. Phys. Chem. A, 110(2):691–699, 2006.

[113] C. S. Babu and C. Lim. A new interpretation of the effective born radius from simulation
and experiment. Chem. Phys. Lett., 310(1-2):225–228, 1999.

[114] C. S. Babu and C. Lim. Theory of ionic hydration: Insights from molecular dynamics simu-
lations and experiment. J. Phys. Chem. B, 103(37):7958–7968, 1999.

[115] A. C. Vaiana, A. Schulz, J. Wolfrum, M. Sauer, and J. C. Smith. Molecular mechanics force
field parameterization of the fluorescent probe rhodamine 6G using automated frequency
matching. J. Comput. Chem., 24(5):632–639, 2003.

[116] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
Jr J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyen-
gar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Naka-
jima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Ko-
maromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.
Pople. Gaussian 03, revision c.02. Gaussian, Inc., Wallingford, CT, 2004.

MTK++ v 0.2.0 107 of 108

M
TK++

[117] J. M. Seminario. Calculation of intramolecular force fields from second-derivative tensors.
Int. J. Quantum Chem, 60(7):59–65, 1996.

[118] U. C. Singh and P. A. Kollman. An approach to computing electrostatic charges for molecules.
J. Comput. Chem., 5(2):129–145, 1984.

[119] B. H. Besler, K. M. Merz Jr., and P. A. Kollman. Atomic Charges Derived from Semiempirical
Methods. J. Comput. Chem., 11(4):431–439, 1990.

[120] C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. A Well-Behaved Electrostatic
Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the RESP
Model. J. Phys. Chem., 97(40):10269–10280, 1993.

[121] P. Cieplak, W. D. Cornell, C. Bayly, and P. A. Kollman. Application of the Multimolecule
and Multiconformational RESP Methodology to Biopolymers - Charge Derivation for DNA,
RNA, and Proteins. J. Comput. Chem., 16(11):1357–1377, 1995.

MTK++ v 0.2.0 108 of 108

	TABLE OF CONTENTS
	1 Introduction
	2 Design
	2.1 Library Hierarchy
	2.2 Molecule Library
	2.3 Graph Library
	2.3.1 Graph Theory
	2.3.2 Library Design

	2.4 MM Library
	2.4.1 Background
	2.4.2 Library Design

	2.5 Parsers Library

	3 Atom Type and Bond Perception
	4 Ring Perception
	5 Addition of Hydrogen Atoms to Molecules
	6 Conformational Sampling
	7 Substructure Searching/ Functionalize
	8 Clique Detection/ Maximum Common Pharmacophore
	9 Superimposition
	10 Metalloproteins
	11 Metal Center Perception
	12 Metal Center Parameter Builder
	12.1 Equilibrium Bond Lengths and Angles
	12.2 Force Constants
	12.3 Point Charges

	13 Development History
	14 Tests
	14.1 File Formats
	14.2 Hybridize
	14.3 Linear Algebra
	14.4 Molecular Mechanics
	14.5 Ring

	15 Examples
	15.1 Active Site Capping (capActiveSite)
	15.2 File Conversion (frcmod2xml, prep2xml)
	15.3 Hybridize
	15.4 Functionalize (func)
	15.5 MM Energy
	15.6 Protonate
	15.7 Sequence Alignment
	15.8 Superimposer
	15.9 pdbSearcher
	15.10 MCPB
	15.10.1 Schematic Generation
	15.10.2 Source PDB File
	15.10.3 Generate the MCPB scripts
	15.10.4 Settings file
	15.10.5 Structural Preparation
	15.10.6 Side Chain Model
	15.10.7 Standard Molecule
	15.10.8 Side Chain Model Optimization/Frequency Calculation
	15.10.9 Large Model
	15.10.10 Large Model Charge Calculation
	15.10.11 RESP
	15.10.12 Create XML Libraries
	15.10.13 Create FF Modification Files
	15.10.14 Create AMBER prep and frcmod Files
	15.10.15 Control Script Syntax

