/* clog.c * * Complex natural logarithm * * * * SYNOPSIS: * * double complex clog(); * double complex z, w; * * w = clog (z); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 7000 8.5e-17 1.9e-17 * IEEE -10,+10 30000 5.0e-15 1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */ #include "complex.h" #include "mconf.h" #ifdef ANSIPROT static void cchsh ( double x, double *c, double *s ); static double redupi ( double x ); static double ctans ( double complex z ); #else static void cchsh(); static double redupi(); static double ctans(); double cabs(), fabs(), sqrt(); double log(), exp(), atan2(), cosh(), sinh(); double asin(), sin(), cos(); #endif extern double MAXNUM, MACHEP, PI, PIO2; double complex clog (z) double complex z; { double complex w; double p, rr; /*rr = sqrt( z->r * z->r + z->i * z->i );*/ rr = cabs(z); p = log(rr); rr = atan2 (cimag (z), creal (z)); w = p + rr * I; return (w); } /* cexp() * * Complex exponential function * * * * SYNOPSIS: * * double complex cexp (); * double complex z, w; * * w = cexp (z); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8700 3.7e-17 1.1e-17 * IEEE -10,+10 30000 3.0e-16 8.7e-17 * */ double complex cexp(z) double complex z; { double complex w; double r, x, y; x = creal (z); y = cimag (z); r = exp (x); w = r * cos (y) + r * sin (y) * I; return (w); } /* csin() * * Complex circular sine * * * * SYNOPSIS: * * double complex csin(); * double complex z, w; * * w = csin (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * csin(z) = -i csinh(iz). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 5.3e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 * Also tested by csin(casin(z)) = z. * */ double complex csin (z) double complex z; { double complex w; double ch, sh; cchsh( cimag (z), &ch, &sh ); w = sin (creal(z)) * ch + (cos (creal(z)) * sh) * I; return (w); } /* calculate cosh and sinh */ static void cchsh( x, c, s ) double x, *c, *s; { double e, ei; if (fabs(x) <= 0.5) { *c = cosh(x); *s = sinh(x); } else { e = exp(x); ei = 0.5/e; e = 0.5 * e; *s = e - ei; *c = e + ei; } } /* ccos() * * Complex circular cosine * * * * SYNOPSIS: * * double complex ccos(); * double complex z, w; * * w = ccos (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 4.5e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 */ double complex ccos (z) double complex z; { double complex w; double ch, sh; cchsh( cimag(z), &ch, &sh ); w = cos(creal (z)) * ch - (sin (creal (z)) * sh) * I; return (w); } /* ctan() * * Complex circular tangent * * * * SYNOPSIS: * * double complex ctan(); * double complex z, w; * * w = ctan (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * ctan(z) = -i ctanh(iz). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 7.1e-17 1.6e-17 * IEEE -10,+10 30000 7.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. */ double complex ctan (z) double complex z; { double complex w; double d; d = cos (2.0 * creal (z)) + cosh (2.0 * cimag (z)); if (fabs(d) < 0.25) d = ctans (z); if (d == 0.0 ) { mtherr ("ctan", OVERFLOW); w = MAXNUM + MAXNUM * I; return (w); } w = sin (2.0 * creal(z)) / d + (sinh (2.0 * cimag(z)) / d) * I; return (w); } /* ccot() * * Complex circular cotangent * * * * SYNOPSIS: * * double complex ccot(); * double complex z, w; * * w = ccot (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 3000 6.5e-17 1.6e-17 * IEEE -10,+10 30000 9.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 + i0. */ double complex ccot (z) double complex z; { double complex w; double d; d = cosh (2.0 * cimag (z)) - cos (2.0 * creal(z)); if (fabs(d) < 0.25) d = ctans (z); if (d == 0.0) { mtherr ("ccot", OVERFLOW); w = MAXNUM + MAXNUM * I; return (w); } w = sin (2.0 * creal(z)) / d - (sinh (2.0 * cimag(z)) / d) * I; return w; } /* Program to subtract nearest integer multiple of PI */ /* extended precision value of PI: */ #ifdef UNK static double DP1 = 3.14159265160560607910E0; static double DP2 = 1.98418714791870343106E-9; static double DP3 = 1.14423774522196636802E-17; #endif #ifdef DEC static unsigned short P1[] = {0040511,0007732,0120000,0000000,}; static unsigned short P2[] = {0031010,0055060,0100000,0000000,}; static unsigned short P3[] = {0022123,0011431,0105056,0001560,}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef IBMPC static unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009}; static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21}; static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef MIEEE static unsigned short P1[] = { 0x4009,0x21fb,0x5400,0x0000 }; static unsigned short P2[] = { 0x3e21,0x0b46,0x1000,0x0000 }; static unsigned short P3[] = { 0x3c6a,0x6263,0x3145,0xc06e }; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif static double redupi(x) double x; { double t; long i; t = x/PI; if( t >= 0.0 ) t += 0.5; else t -= 0.5; i = t; /* the multiple */ t = i; t = ((x - t * DP1) - t * DP2) - t * DP3; return (t); } /* Taylor series expansion for cosh(2y) - cos(2x) */ static double ctans (z) double complex z; { double f, x, x2, y, y2, rn, t; double d; x = fabs (2.0 * creal (z)); y = fabs (2.0 * cimag(z)); x = redupi(x); x = x * x; y = y * y; x2 = 1.0; y2 = 1.0; f = 1.0; rn = 0.0; d = 0.0; do { rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 + x2; t /= f; d += t; rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 - x2; t /= f; d += t; } while (fabs(t/d) > MACHEP); return (d); } /* casin() * * Complex circular arc sine * * * * SYNOPSIS: * * double complex casin(); * double complex z, w; * * w = casin (z); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * casin(z) = -i casinh(iz) * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 10100 2.1e-15 3.4e-16 * IEEE -10,+10 30000 2.2e-14 2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. */ double complex casin (z) double complex z; { double complex w; static double complex ca, ct, zz, z2; double x, y; x = creal (z); y = cimag (z); if (y == 0.0) { if (fabs(x) > 1.0) { w = PIO2 + 0.0 * I; mtherr ("casin", DOMAIN); } else { w = asin (x) + 0.0 * I; } return (w); } /* Power series expansion */ /* b = cabs(z); if( b < 0.125 ) { z2.r = (x - y) * (x + y); z2.i = 2.0 * x * y; cn = 1.0; n = 1.0; ca.r = x; ca.i = y; sum.r = x; sum.i = y; do { ct.r = z2.r * ca.r - z2.i * ca.i; ct.i = z2.r * ca.i + z2.i * ca.r; ca.r = ct.r; ca.i = ct.i; cn *= n; n += 1.0; cn /= n; n += 1.0; b = cn/n; ct.r *= b; ct.i *= b; sum.r += ct.r; sum.i += ct.i; b = fabs(ct.r) + fabs(ct.i); } while( b > MACHEP ); w->r = sum.r; w->i = sum.i; return; } */ ca = x + y * I; ct = ca * I; /* sqrt( 1 - z*z) */ /* cmul( &ca, &ca, &zz ) */ /*x * x - y * y */ zz = (x - y) * (x + y) + (2.0 * x * y) * I; zz = 1.0 - creal(zz) - cimag(zz) * I; z2 = csqrt (zz); zz = ct + z2; zz = clog (zz); /* multiply by 1/i = -i */ w = zz * (-1.0 * I); return (w); } /* cacos() * * Complex circular arc cosine * * * * SYNOPSIS: * * double complex cacos(); * double complex z, w; * * w = cacos (z); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 1.6e-15 2.8e-16 * IEEE -10,+10 30000 1.8e-14 2.2e-15 */ double complex cacos (z) double complex z; { double complex w; w = casin (z); w = (PIO2 - creal (w)) - cimag (w) * I; return (w); } /* catan() * * Complex circular arc tangent * * * * SYNOPSIS: * * double complex catan(); * double complex z, w; * * w = catan (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * catan(z) = -i catanh(iz). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5900 1.3e-16 7.8e-18 * IEEE -10,+10 30000 2.3e-15 8.5e-17 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17. See also clog(). */ double complex catan (z) double complex z; { double complex w; double a, t, x, x2, y; x = creal (z); y = cimag (z); if ((x == 0.0) && (y > 1.0)) goto ovrf; x2 = x * x; a = 1.0 - x2 - (y * y); if (a == 0.0) goto ovrf; t = 0.5 * atan2 (2.0 * x, a); w = redupi (t); t = y - 1.0; a = x2 + (t * t); if (a == 0.0) goto ovrf; t = y + 1.0; a = (x2 + (t * t))/a; w = w + (0.25 * log (a)) * I; return (w); ovrf: mtherr ("catan", OVERFLOW); w = MAXNUM + MAXNUM * I; return (w); } /* csinh * * Complex hyperbolic sine * * * * SYNOPSIS: * * double complex csinh(); * double complex z, w; * * w = csinh (z); * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 * = sinh x * cos y + i cosh x * sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 3.1e-16 8.2e-17 * */ double complex csinh (z) double complex z; { double complex w; double x, y; x = creal(z); y = cimag(z); w = sinh (x) * cos (y) + (cosh (x) * sin (y)) * I; return (w); } /* casinh * * Complex inverse hyperbolic sine * * * * SYNOPSIS: * * double complex casinh(); * double complex z, w; * * w = casinh (z); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.8e-14 2.6e-15 * */ double complex casinh (z) double complex z; { double complex w; w = -1.0 * I * casin (z * I); return (w); } /* ccosh * * Complex hyperbolic cosine * * * * SYNOPSIS: * * double complex ccosh(); * double complex z, w; * * w = ccosh (z); * * * * DESCRIPTION: * * ccosh(z) = cosh x cos y + i sinh x sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.9e-16 8.1e-17 * */ double complex ccosh (z) double complex z; { double complex w; double x, y; x = creal(z); y = cimag(z); w = cosh (x) * cos (y) + (sinh (x) * sin (y)) * I; return (w); } /* cacosh * * Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * double complex cacosh(); * double complex z, w; * * w = cacosh (z); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.6e-14 2.1e-15 * */ double complex cacosh (z) double complex z; { double complex w; w = I * cacos (z); return (w); } /* ctanh * * Complex hyperbolic tangent * * * * SYNOPSIS: * * double complex ctanh(); * double complex z, w; * * w = ctanh (z); * * * * DESCRIPTION: * * tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.7e-14 2.4e-16 * */ double complex ctanh (z) double complex z; { double complex w; double x, y, d; x = creal(z); y = cimag(z); d = cosh (2.0 * x) + cos (2.0 * y); w = sinh (2.0 * x) / d + (sin (2.0 * y) / d) * I; return (w); } /* catanh * * Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * double complex catanh(); * double complex z, w; * * w = catanh (z); * * * * DESCRIPTION: * * Inverse tanh, equal to -i catan (iz); * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.3e-16 6.2e-17 * */ double complex catanh (z) double complex z; { double complex w; w = -1.0 * I * catan (z * I); return (w); } /* cpow * * Complex power function * * * * SYNOPSIS: * * double complex cpow(); * double complex a, z, w; * * w = cpow (a, z); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 9.4e-15 1.5e-15 * */ double complex cpow (a, z) double complex a, z; { double complex w; double x, y, r, theta, absa, arga; x = creal (z); y = cimag (z); absa = cabs (a); if (absa == 0.0) { return (0.0 + 0.0 * I); } arga = carg (a); r = pow (absa, x); theta = x * arga; if (y != 0.0) { r = r * exp (-y * arga); theta = theta + y * log (absa); } w = r * cos (theta) + (r * sin (theta)) * I; return (w); }