(* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* Here, we define the data type encapsulating a symbolic arithmetic expression, and provide some routines for manipulating it. *) (* I will regret this hack : *) (* NEWS: I did *) type transcendent = I | MULTI_A | MULTI_B | CONJ type expr = | Num of Number.number | NaN of transcendent | Plus of expr list | Times of expr * expr | CTimes of expr * expr | CTimesJ of expr * expr (* CTimesJ (a, b) = conj(a) * b *) | Uminus of expr | Load of Variable.variable | Store of Variable.variable * expr type assignment = Assign of Variable.variable * expr (* various hash functions *) let hash_float x = let (mantissa, exponent) = frexp x in truncate (float_of_int(exponent) *. 1234.567 +. mantissa *. 10000.0) let sum_list l = List.fold_right (+) l 0 let transcendent_to_float = function | I -> 2.718281828459045235360287471 (* any transcendent number will do *) | MULTI_A -> 0.6931471805599453094172321214 | MULTI_B -> -0.3665129205816643270124391582 | CONJ -> 0.6019072301972345747375400015 let rec hash = function | Num x -> hash_float (Number.to_float x) | NaN x -> hash_float (transcendent_to_float x) | Load v -> 1 + 1237 * Variable.hash v | Store (v, x) -> 2 * Variable.hash v - 2345 * hash x | Plus l -> 5 + 23451 * sum_list (List.map Hashtbl.hash l) | Times (a, b) -> 41 + 31415 * (Hashtbl.hash a + Hashtbl.hash b) | CTimes (a, b) -> 49 + 3245 * (Hashtbl.hash a + Hashtbl.hash b) | CTimesJ (a, b) -> 31 + 3471 * (Hashtbl.hash a + Hashtbl.hash b) | Uminus x -> 42 + 12345 * (hash x) (* find all variables *) let rec find_vars x = match x with | Load y -> [y] | Plus l -> List.flatten (List.map find_vars l) | Times (a, b) -> (find_vars a) @ (find_vars b) | CTimes (a, b) -> (find_vars a) @ (find_vars b) | CTimesJ (a, b) -> (find_vars a) @ (find_vars b) | Uminus a -> find_vars a | _ -> [] (* TRUE if expression is a constant *) let is_constant = function | Num _ -> true | NaN _ -> true | Load v -> Variable.is_constant v | _ -> false let is_known_constant = function | Num _ -> true | NaN _ -> true | _ -> false (* expr to string, used for debugging *) let rec foldr_string_concat l = match l with [] -> "" | [a] -> a | a :: b -> a ^ " " ^ (foldr_string_concat b) let string_of_transcendent = function | I -> "I" | MULTI_A -> "MULTI_A" | MULTI_B -> "MULTI_B" | CONJ -> "CONJ" let rec to_string = function | Load v -> Variable.unparse v | Num n -> string_of_float (Number.to_float n) | NaN n -> string_of_transcendent n | Plus x -> "(+ " ^ (foldr_string_concat (List.map to_string x)) ^ ")" | Times (a, b) -> "(* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")" | CTimes (a, b) -> "(c* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")" | CTimesJ (a, b) -> "(cj* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")" | Uminus a -> "(- " ^ (to_string a) ^ ")" | Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^ (to_string a) ^ ")" let rec to_string_a d x = if (d = 0) then "..." else match x with | Load v -> Variable.unparse v | Num n -> Number.to_konst n | NaN n -> string_of_transcendent n | Plus x -> "(+ " ^ (foldr_string_concat (List.map (to_string_a (d - 1)) x)) ^ ")" | Times (a, b) -> "(* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")" | CTimes (a, b) -> "(c* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")" | CTimesJ (a, b) -> "(cj* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")" | Uminus a -> "(- " ^ (to_string_a (d-1) a) ^ ")" | Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^ (to_string_a (d-1) a) ^ ")" let to_string = to_string_a 10 let assignment_to_string = function | Assign (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^ (to_string a) ^ ")" let dump print = List.iter (fun x -> print ((assignment_to_string x) ^ "\n")) (* find all constants in a given expression *) let rec expr_to_constants = function | Num n -> [n] | Plus a -> List.flatten (List.map expr_to_constants a) | Times (a, b) -> (expr_to_constants a) @ (expr_to_constants b) | CTimes (a, b) -> (expr_to_constants a) @ (expr_to_constants b) | CTimesJ (a, b) -> (expr_to_constants a) @ (expr_to_constants b) | Uminus a -> expr_to_constants a | _ -> [] let add_float_key_value list_so_far k = if List.exists (fun k2 -> Number.equal k k2) list_so_far then list_so_far else k :: list_so_far let unique_constants = List.fold_left add_float_key_value []