(* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* policies for loading/computing twiddle factors *) open Complex open Util type twop = TW_FULL | TW_CEXP | TW_NEXT let optostring = function | TW_CEXP -> "TW_CEXP" | TW_NEXT -> "TW_NEXT" | TW_FULL -> "TW_FULL" type twinstr = (twop * int * int) let rec unroll_twfull l = match l with | [] -> [] | (TW_FULL, v, n) :: b -> (forall [] cons 1 n (fun i -> (TW_CEXP, v, i))) @ unroll_twfull b | a :: b -> a :: unroll_twfull b let twinstr_to_c_string l = let one (op, a, b) = Printf.sprintf "{ %s, %d, %d }" (optostring op) a b in let rec loop first = function | [] -> "" | a :: b -> (if first then "\n" else ",\n") ^ (one a) ^ (loop false b) in "{" ^ (loop true l) ^ "}" let twinstr_to_simd_string vl l = let one sep = function | (TW_NEXT, 1, 0) -> sep ^ "{TW_NEXT, " ^ vl ^ ", 0}" | (TW_NEXT, _, _) -> failwith "twinstr_to_simd_string" | (TW_CEXP, v, b) -> sep ^ (Printf.sprintf "VTW(%d,%d)" v b) | _ -> failwith "twinstr_to_simd_string" in let rec loop first = function | [] -> "" | a :: b -> (one (if first then "\n" else ",\n") a) ^ (loop false b) in "{" ^ (loop true (unroll_twfull l)) ^ "}" let rec pow m n = if (n = 0) then 1 else m * pow m (n - 1) let rec is_pow m n = n = 1 || ((n mod m) = 0 && is_pow m (n / m)) let rec log m n = if n = 1 then 0 else 1 + log m (n / m) let rec largest_power_smaller_than m i = if (is_pow m i) then i else largest_power_smaller_than m (i - 1) let rec smallest_power_larger_than m i = if (is_pow m i) then i else smallest_power_larger_than m (i + 1) let rec_array n f = let g = ref (fun i -> Complex.zero) in let a = Array.init n (fun i -> lazy (!g i)) in let h i = f (fun i -> Lazy.force a.(i)) i in begin g := h; h end let ctimes use_complex_arith a b = if use_complex_arith then Complex.ctimes a b else Complex.times a b let ctimesj use_complex_arith a b = if use_complex_arith then Complex.ctimesj a b else Complex.times (Complex.conj a) b let make_bytwiddle sign use_complex_arith g f i = if i = 0 then f i else if sign = 1 then ctimes use_complex_arith (g i) (f i) else ctimesj use_complex_arith (g i) (f i) (* various policies for computing/loading twiddle factors *) let twiddle_policy_load_all v use_complex_arith = let bytwiddle n sign w f = make_bytwiddle sign use_complex_arith (fun i -> w (i - 1)) f and twidlen n = 2 * (n - 1) and twdesc r = [(TW_FULL, v, r);(TW_NEXT, 1, 0)] in bytwiddle, twidlen, twdesc (* * if i is a power of two, then load w (log i) * else let x = largest power of 2 less than i in * let y = i - x in * compute w^{x+y} = w^x * w^y *) let twiddle_policy_log2 v use_complex_arith = let bytwiddle n sign w f = let g = rec_array n (fun self i -> if i = 0 then Complex.one else if is_pow 2 i then w (log 2 i) else let x = largest_power_smaller_than 2 i in let y = i - x in ctimes use_complex_arith (self x) (self y)) in make_bytwiddle sign use_complex_arith g f and twidlen n = 2 * (log 2 (largest_power_smaller_than 2 (2 * n - 1))) and twdesc n = (List.flatten (List.map (fun i -> if i > 0 && is_pow 2 i then [TW_CEXP, v, i] else []) (iota n))) @ [(TW_NEXT, 1, 0)] in bytwiddle, twidlen, twdesc let twiddle_policy_log3 v use_complex_arith = let rec terms_needed i pi s n = if (s >= n - 1) then i else terms_needed (i + 1) (3 * pi) (s + pi) n in let rec bytwiddle n sign w f = let nterms = terms_needed 0 1 0 n in let maxterm = pow 3 (nterms - 1) in let g = rec_array (3 * n) (fun self i -> if i = 0 then Complex.one else if is_pow 3 i then w (log 3 i) else if i = (n - 1) && maxterm >= n then w (nterms - 1) else let x = smallest_power_larger_than 3 i in if (i + i >= x) then let x = min x (n - 1) in ctimesj use_complex_arith (self (x - i)) (self x) else let x = largest_power_smaller_than 3 i in ctimes use_complex_arith (self (i - x)) (self x)) in make_bytwiddle sign use_complex_arith g f and twidlen n = 2 * (terms_needed 0 1 0 n) and twdesc n = (List.map (fun i -> let x = min (pow 3 i) (n - 1) in TW_CEXP, v, x) (iota ((twidlen n) / 2))) @ [(TW_NEXT, 1, 0)] in bytwiddle, twidlen, twdesc let current_twiddle_policy = ref twiddle_policy_load_all let twiddle_policy use_complex_arith = !current_twiddle_policy use_complex_arith let set_policy x = Arg.Unit (fun () -> current_twiddle_policy := x) let set_policy_int x = Arg.Int (fun i -> current_twiddle_policy := x i) let undocumented = " Undocumented twiddle policy" let speclist = [ "-twiddle-load-all", set_policy twiddle_policy_load_all, undocumented; "-twiddle-log2", set_policy twiddle_policy_log2, undocumented; "-twiddle-log3", set_policy twiddle_policy_log3, undocumented; ]