/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Complex RDFTs of rank == 1 when the vector length vn is >= # processes. In this case, we don't need to use a six-step type algorithm, and can instead transpose the RDFT dimension with the vector dimension to make the RDFT local. */ #include "mpi-rdft.h" #include "mpi-transpose.h" typedef struct { solver super; int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ rearrangement rearrange; } S; typedef struct { plan_mpi_rdft super; plan *cldt_before, *cld, *cldt_after; int preserve_input; rearrangement rearrange; } P; static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld, *cldt_before, *cldt_after; /* global transpose */ cldt_before = (plan_rdft *) ego->cldt_before; cldt_before->apply(ego->cldt_before, I, O); if (ego->preserve_input) I = O; /* 1d RDFT(s) */ cld = (plan_rdft *) ego->cld; cld->apply(ego->cld, O, I); /* global transpose */ cldt_after = (plan_rdft *) ego->cldt_after; cldt_after->apply(ego->cldt_after, I, O); } static int applicable(const S *ego, const problem *p_, const planner *plnr) { const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_; int n_pes; MPI_Comm_size(p->comm, &n_pes); return (1 && p->sz->rnk == 1 && !(p->flags & ~RANK1_BIGVEC_ONLY) && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) && p->I != p->O)) #if 0 /* don't need this check since no other rank-1 rdft solver */ && (p->vn >= n_pes /* TODO: relax this, using more memory? */ || (p->flags & RANK1_BIGVEC_ONLY)) #endif && XM(rearrange_applicable)(ego->rearrange, p->sz->dims[0], p->vn, n_pes) && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */ || !XM(rdft_serial_applicable)(p)) ); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cldt_before, wakefulness); X(plan_awake)(ego->cld, wakefulness); X(plan_awake)(ego->cldt_after, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldt_after); X(plan_destroy_internal)(ego->cld); X(plan_destroy_internal)(ego->cldt_before); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const char descrip[][16] = { "contig", "discontig", "square-after", "square-middle", "square-before" }; p->print(p, "(mpi-rdft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))", descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"", ego->cldt_before, ego->cld, ego->cldt_after); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_mpi_rdft *p; P *pln; plan *cld = 0, *cldt_before = 0, *cldt_after = 0; R *I, *O; INT yblock, yb, nx, ny, vn; int my_pe, n_pes; static const plan_adt padt = { XM(rdft_solve), awake, print, destroy }; UNUSED(ego); if (!applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_mpi_rdft *) p_; MPI_Comm_rank(p->comm, &my_pe); MPI_Comm_size(p->comm, &n_pes); nx = p->sz->dims[0].n; if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes))) return (plan *) 0; vn = p->vn / ny; A(ny * vn == p->vn); yblock = XM(default_block)(ny, n_pes); cldt_before = X(mkplan_d)(plnr, XM(mkproblem_transpose)( nx, ny, vn, I = p->I, O = p->O, p->sz->dims[0].b[IB], yblock, p->comm, 0)); if (XM(any_true)(!cldt_before, p->comm)) goto nada; if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; } yb = XM(block)(ny, yblock, my_pe); cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(nx, vn, vn), X(mktensor_2d)(yb, vn*nx, vn*nx, vn, 1, 1), O, I, p->kind[0])); if (XM(any_true)(!cld, p->comm)) goto nada; cldt_after = X(mkplan_d)(plnr, XM(mkproblem_transpose)( ny, nx, vn, I, O, yblock, p->sz->dims[0].b[OB], p->comm, 0)); if (XM(any_true)(!cldt_after, p->comm)) goto nada; pln = MKPLAN_MPI_RDFT(P, &padt, apply); pln->cldt_before = cldt_before; pln->cld = cld; pln->cldt_after = cldt_after; pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); pln->rearrange = ego->rearrange; X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops); X(ops_add2)(&cldt_after->ops, &pln->super.super.ops); return &(pln->super.super); nada: X(plan_destroy_internal)(cldt_after); X(plan_destroy_internal)(cld); X(plan_destroy_internal)(cldt_before); return (plan *) 0; } static solver *mksolver(rearrangement rearrange, int preserve_input) { static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->rearrange = rearrange; slv->preserve_input = preserve_input; return &(slv->super); } void XM(rdft_rank1_bigvec_register)(planner *p) { rearrangement rearrange; int preserve_input; FORALL_REARRANGE(rearrange) for (preserve_input = 0; preserve_input <= 1; ++preserve_input) REGISTER_SOLVER(p, mksolver(rearrange, preserve_input)); }