/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "rdft.h" #include static void destroy(problem *ego_) { problem_rdft *ego = (problem_rdft *) ego_; #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR) X(ifree0)(ego->kind); #endif X(tensor_destroy2)(ego->vecsz, ego->sz); X(ifree)(ego_); } static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) { int i; for (i = 0; i < rnk; ++i) X(md5int)(m, kind[i]); } static void hash(const problem *p_, md5 *m) { const problem_rdft *p = (const problem_rdft *) p_; X(md5puts)(m, "rdft"); X(md5int)(m, p->I == p->O); kind_hash(m, p->kind, p->sz->rnk); X(md5int)(m, X(alignment_of)(p->I)); X(md5int)(m, X(alignment_of)(p->O)); X(tensor_md5)(m, p->sz); X(tensor_md5)(m, p->vecsz); } static void recur(const iodim *dims, int rnk, R *I) { if (rnk == RNK_MINFTY) return; else if (rnk == 0) I[0] = K(0.0); else if (rnk > 0) { INT i, n = dims[0].n, is = dims[0].is; if (rnk == 1) { /* this case is redundant but faster */ for (i = 0; i < n; ++i) I[i * is] = K(0.0); } else { for (i = 0; i < n; ++i) recur(dims + 1, rnk - 1, I + i * is); } } } void X(rdft_zerotens)(tensor *sz, R *I) { recur(sz->dims, sz->rnk, I); } #define KSTR_LEN 8 const char *X(rdft_kind_str)(rdft_kind kind) { static const char kstr[][KSTR_LEN] = { "r2hc", "r2hc01", "r2hc10", "r2hc11", "hc2r", "hc2r01", "hc2r10", "hc2r11", "dht", "redft00", "redft01", "redft10", "redft11", "rodft00", "rodft01", "rodft10", "rodft11" }; A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); return kstr[kind]; } static void print(const problem *ego_, printer *p) { const problem_rdft *ego = (const problem_rdft *) ego_; int i; p->print(p, "(rdft %d %D %T %T", X(alignment_of)(ego->I), (INT)(ego->O - ego->I), ego->sz, ego->vecsz); for (i = 0; i < ego->sz->rnk; ++i) p->print(p, " %d", (int)ego->kind[i]); p->print(p, ")"); } static void zero(const problem *ego_) { const problem_rdft *ego = (const problem_rdft *) ego_; tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); X(rdft_zerotens)(sz, UNTAINT(ego->I)); X(tensor_destroy)(sz); } static const problem_adt padt = { PROBLEM_RDFT, hash, zero, print, destroy }; /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be eliminated. REDFT/RODFT unit dimensions often have factors of 2.0 and suchlike from normalization and phases, although in principle these constant factors from different dimensions could be combined. */ static int nontrivial(const iodim *d, rdft_kind kind) { return (d->n > 1 || kind == R2HC11 || kind == HC2R11 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); } problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, R *I, R *O, const rdft_kind *kind) { problem_rdft *ego; int rnk = sz->rnk; int i; A(X(tensor_kosherp)(sz)); A(X(tensor_kosherp)(vecsz)); A(FINITE_RNK(sz->rnk)); if (UNTAINT(I) == UNTAINT(O)) I = O = JOIN_TAINT(I, O); if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) return X(mkproblem_unsolvable)(); for (i = rnk = 0; i < sz->rnk; ++i) { A(sz->dims[i].n > 0); if (nontrivial(sz->dims + i, kind[i])) ++rnk; } #if defined(STRUCT_HACK_KR) ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) + sizeof(rdft_kind) * (rnk > 0 ? rnk - 1 : 0), &padt); #elif defined(STRUCT_HACK_C99) ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) + sizeof(rdft_kind) * rnk, &padt); #else ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS); #endif /* do compression and sorting as in X(tensor_compress), but take transform kind into account (sigh) */ ego->sz = X(mktensor)(rnk); for (i = rnk = 0; i < sz->rnk; ++i) { if (nontrivial(sz->dims + i, kind[i])) { ego->kind[rnk] = kind[i]; ego->sz->dims[rnk++] = sz->dims[i]; } } for (i = 0; i + 1 < rnk; ++i) { int j; for (j = i + 1; j < rnk; ++j) if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { iodim dswap; rdft_kind kswap; dswap = ego->sz->dims[i]; ego->sz->dims[i] = ego->sz->dims[j]; ego->sz->dims[j] = dswap; kswap = ego->kind[i]; ego->kind[i] = ego->kind[j]; ego->kind[j] = kswap; } } for (i = 0; i < rnk; ++i) if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 || ego->kind[i] == DHT || ego->kind[i] == HC2R)) ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ ego->vecsz = X(tensor_compress_contiguous)(vecsz); ego->I = I; ego->O = O; A(FINITE_RNK(ego->sz->rnk)); return &(ego->super); } /* Same as X(mkproblem_rdft), but also destroy input tensors. */ problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, R *I, R *O, const rdft_kind *kind) { problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); X(tensor_destroy2)(vecsz, sz); return p; } /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, R *I, R *O, rdft_kind kind) { A(sz->rnk <= 1); return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); } problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, R *I, R *O, rdft_kind kind) { A(sz->rnk <= 1); return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); } /* create a zero-dimensional problem */ problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) { return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, (const rdft_kind *)0); }