/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "threads.h" typedef struct { plan_rdft super; plan *cld; plan **cldws; int nthr; INT r; } P; typedef struct { plan **cldws; R *IO; } PD; static void *spawn_apply(spawn_data *d) { PD *ego = (PD *) d->data; plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]); cldw->apply((plan *) cldw, ego->IO); return 0; } static void apply_dit(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld; cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); { PD d; d.IO = O; d.cldws = ego->cldws; X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); } } static void apply_dif(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld; { PD d; d.IO = I; d.cldws = ego->cldws; X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); } cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; int i; X(plan_awake)(ego->cld, wakefulness); for (i = 0; i < ego->nthr; ++i) X(plan_awake)(ego->cldws[i], wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; int i; X(plan_destroy_internal)(ego->cld); for (i = 0; i < ego->nthr; ++i) X(plan_destroy_internal)(ego->cldws[i]); X(ifree)(ego->cldws); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; int i; p->print(p, "(rdft-thr-ct-%s-x%d/%D", ego->super.apply == apply_dit ? "dit" : "dif", ego->nthr, ego->r); for (i = 0; i < ego->nthr; ++i) if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] && (i <= 1 || ego->cldws[i] != ego->cldws[i-2]))) p->print(p, "%(%p%)", ego->cldws[i]); p->print(p, "%(%p%))", ego->cld); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const hc2hc_solver *ego = (const hc2hc_solver *) ego_; const problem_rdft *p; P *pln = 0; plan *cld = 0, **cldws = 0; INT n, r, m, v, ivs, ovs, mcount; int i, nthr, plnr_nthr_save; INT block_size; iodim *d; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr)) return (plan *) 0; p = (const problem_rdft *) p_; d = p->sz->dims; n = d[0].n; r = X(choose_radix)(ego->r, n); m = n / r; mcount = (m + 2) / 2; X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); block_size = (mcount + plnr->nthr - 1) / plnr->nthr; nthr = (int)((mcount + block_size - 1) / block_size); plnr_nthr_save = plnr->nthr; plnr->nthr = (plnr->nthr + nthr - 1) / nthr; cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS); for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0; switch (p->kind[0]) { case R2HC: for (i = 0; i < nthr; ++i) { cldws[i] = ego->mkcldw(ego, R2HC, r, m, d[0].os, v, ovs, i*block_size, (i == nthr - 1) ? (mcount - i*block_size) : block_size, p->O, plnr); if (!cldws[i]) goto nada; } plnr->nthr = plnr_nthr_save; cld = X(mkplan_d)(plnr, X(mkproblem_rdft_d)( X(mktensor_1d)(m, r * d[0].is, d[0].os), X(mktensor_2d)(r, d[0].is, m * d[0].os, v, ivs, ovs), p->I, p->O, p->kind) ); if (!cld) goto nada; pln = MKPLAN_RDFT(P, &padt, apply_dit); break; case HC2R: for (i = 0; i < nthr; ++i) { cldws[i] = ego->mkcldw(ego, HC2R, r, m, d[0].is, v, ivs, i*block_size, (i == nthr - 1) ? (mcount - i*block_size) : block_size, p->I, plnr); if (!cldws[i]) goto nada; } plnr->nthr = plnr_nthr_save; cld = X(mkplan_d)(plnr, X(mkproblem_rdft_d)( X(mktensor_1d)(m, d[0].is, r * d[0].os), X(mktensor_2d)(r, m * d[0].is, d[0].os, v, ivs, ovs), p->I, p->O, p->kind) ); if (!cld) goto nada; pln = MKPLAN_RDFT(P, &padt, apply_dif); break; default: A(0); } pln->cld = cld; pln->cldws = cldws; pln->nthr = nthr; pln->r = r; X(ops_zero)(&pln->super.super.ops); for (i = 0; i < nthr; ++i) X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops); X(ops_add2)(&cld->ops, &pln->super.super.ops); return &(pln->super.super); nada: if (cldws) { for (i = 0; i < nthr; ++i) X(plan_destroy_internal)(cldws[i]); X(ifree)(cldws); } X(plan_destroy_internal)(cld); return (plan *) 0; } hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r, hc2hc_mkinferior mkcldw) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt); slv->r = r; slv->mkcldw = mkcldw; return slv; }