subroutine dsvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info) implicit none integer ldx,n,p,ldu,ldv,job,info double precision x(ldx,*),s(*),e(*),u(ldu,*),v(ldv,*),work(*) ! ! ! dsvdc is a subroutine to reduce a double precision nxp matrix x ! by orthogonal transformations u and v to diagonal form. the ! diagonal elements s(i) are the singular values of x. the ! columns of u are the corresponding left singular vectors, ! and the columns of v the right singular vectors. ! ! on entry ! ! x double precision(ldx,p), where ldx.ge.n. ! x contains the matrix whose singular value ! decomposition is to be computed. x is ! destroyed by dsvdc. ! ! ldx integer. ! ldx is the leading dimension of the array x. ! ! n integer. ! n is the number of rows of the matrix x. ! ! p integer. ! p is the number of columns of the matrix x. ! ! ldu integer. ! ldu is the leading dimension of the array u. ! (see below). ! ! ldv integer. ! ldv is the leading dimension of the array v. ! (see below). ! ! work double precision(n). ! work is a scratch array. ! ! job integer. ! job controls the computation of the singular ! vectors. it has the decimal expansion ab ! with the following meaning ! ! a.eq.0 do not compute the left singular ! vectors. ! a.eq.1 return the n left singular vectors ! in u. ! a.ge.2 return the first min(n,p) singular ! vectors in u. ! b.eq.0 do not compute the right singular ! vectors. ! b.eq.1 return the right singular vectors ! in v. ! ! on return ! ! s double precision(mm), where mm=min(n+1,p). ! the first min(n,p) entries of s contain the ! singular values of x arranged in descending ! order of magnitude. ! ! e double precision(p), ! e ordinarily contains zeros. however see the ! discussion of info for exceptions. ! ! u double precision(ldu,k), where ldu.ge.n. if ! joba.eq.1 then k.eq.n, if joba.ge.2 ! then k.eq.min(n,p). ! u contains the matrix of left singular vectors. ! u is not referenced if joba.eq.0. if n.le.p ! or if joba.eq.2, then u may be identified with x ! in the subroutine call. ! ! v double precision(ldv,p), where ldv.ge.p. ! v contains the matrix of right singular vectors. ! v is not referenced if job.eq.0. if p.le.n, ! then v may be identified with x in the ! subroutine call. ! ! info integer. ! the singular values (and their corresponding ! singular vectors) s(info+1),s(info+2),...,s(m) ! are correct (here m=min(n,p)). thus if ! info.eq.0, all the singular values and their ! vectors are correct. in any event, the matrix ! b = trans(u)*x*v is the bidiagonal matrix ! with the elements of s on its diagonal and the ! elements of e on its super-diagonal (trans(u) ! is the transpose of u). thus the singular ! values of x and b are the same. ! ! linpack. this version dated 08/14/78 . ! correction made to shift 2/84. ! g.w. stewart, university of maryland, argonne national lab. ! ! dsvdc uses the following functions and subprograms. ! ! external drot ! blas daxpy,ddot,dscal,dswap,dnrm2,drotg ! fortran dabs,dmax1,max0,min0,mod,dsqrt ! ! internal variables ! integer i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit, & mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1 double precision ddot,dnrm2,t double precision b,c,cs,el,emm1,f,g,scale,shift,sl,sm,sn, & smm1,t1,test,ztest logical wantu,wantv ! ! ! set the maximum number of iterations. ! maxit = 30 ! ! determine what is to be computed. ! wantu = .false. wantv = .false. jobu = mod(job,100)/10 ncu = n if (jobu .gt. 1) ncu = min0(n,p) if (jobu .ne. 0) wantu = .true. if (mod(job,10) .ne. 0) wantv = .true. ! ! reduce x to bidiagonal form, storing the diagonal elements ! in s and the super-diagonal elements in e. ! info = 0 nct = min0(n-1,p) nrt = max0(0,min0(p-2,n)) lu = max0(nct,nrt) if (lu .lt. 1) go to 170 do 160 l = 1, lu lp1 = l + 1 if (l .gt. nct) go to 20 ! ! compute the transformation for the l-th column and ! place the l-th diagonal in s(l). ! s(l) = dnrm2(n-l+1,x(l,l),1) if (s(l) .eq. 0.0d0) go to 10 if (x(l,l) .ne. 0.0d0) s(l) = dsign(s(l),x(l,l)) call dscal(n-l+1,1.0d0/s(l),x(l,l),1) x(l,l) = 1.0d0 + x(l,l) 10 continue s(l) = -s(l) 20 continue if (p .lt. lp1) go to 50 do 40 j = lp1, p if (l .gt. nct) go to 30 if (s(l) .eq. 0.0d0) go to 30 ! ! apply the transformation. ! t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l) call daxpy(n-l+1,t,x(l,l),1,x(l,j),1) 30 continue ! ! place the l-th row of x into e for the ! subsequent calculation of the row transformation. ! e(j) = x(l,j) 40 continue 50 continue if (.not.wantu .or. l .gt. nct) go to 70 ! ! place the transformation in u for subsequent back ! multiplication. ! do 60 i = l, n u(i,l) = x(i,l) 60 continue 70 continue if (l .gt. nrt) go to 150 ! ! compute the l-th row transformation and place the ! l-th super-diagonal in e(l). ! e(l) = dnrm2(p-l,e(lp1),1) if (e(l) .eq. 0.0d0) go to 80 if (e(lp1) .ne. 0.0d0) e(l) = dsign(e(l),e(lp1)) call dscal(p-l,1.0d0/e(l),e(lp1),1) e(lp1) = 1.0d0 + e(lp1) 80 continue e(l) = -e(l) if (lp1 .gt. n .or. e(l) .eq. 0.0d0) go to 120 ! ! apply the transformation. ! do 90 i = lp1, n work(i) = 0.0d0 90 continue do 100 j = lp1, p call daxpy(n-l,e(j),x(lp1,j),1,work(lp1),1) 100 continue do 110 j = lp1, p call daxpy(n-l,-e(j)/e(lp1),work(lp1),1,x(lp1,j),1) 110 continue 120 continue if (.not.wantv) go to 140 ! ! place the transformation in v for subsequent ! back multiplication. ! do 130 i = lp1, p v(i,l) = e(i) 130 continue 140 continue 150 continue 160 continue 170 continue ! ! set up the final bidiagonal matrix or order m. ! m = min0(p,n+1) nctp1 = nct + 1 nrtp1 = nrt + 1 if (nct .lt. p) s(nctp1) = x(nctp1,nctp1) if (n .lt. m) s(m) = 0.0d0 if (nrtp1 .lt. m) e(nrtp1) = x(nrtp1,m) e(m) = 0.0d0 ! ! if required, generate u. ! if (.not.wantu) go to 300 if (ncu .lt. nctp1) go to 200 do 190 j = nctp1, ncu do 180 i = 1, n u(i,j) = 0.0d0 180 continue u(j,j) = 1.0d0 190 continue 200 continue if (nct .lt. 1) go to 290 do 280 ll = 1, nct l = nct - ll + 1 if (s(l) .eq. 0.0d0) go to 250 lp1 = l + 1 if (ncu .lt. lp1) go to 220 do 210 j = lp1, ncu t = -ddot(n-l+1,u(l,l),1,u(l,j),1)/u(l,l) call daxpy(n-l+1,t,u(l,l),1,u(l,j),1) 210 continue 220 continue call dscal(n-l+1,-1.0d0,u(l,l),1) u(l,l) = 1.0d0 + u(l,l) lm1 = l - 1 if (lm1 .lt. 1) go to 240 do 230 i = 1, lm1 u(i,l) = 0.0d0 230 continue 240 continue go to 270 250 continue do 260 i = 1, n u(i,l) = 0.0d0 260 continue u(l,l) = 1.0d0 270 continue 280 continue 290 continue 300 continue ! ! if it is required, generate v. ! if (.not.wantv) go to 350 do 340 ll = 1, p l = p - ll + 1 lp1 = l + 1 if (l .gt. nrt) go to 320 if (e(l) .eq. 0.0d0) go to 320 do 310 j = lp1, p t = -ddot(p-l,v(lp1,l),1,v(lp1,j),1)/v(lp1,l) call daxpy(p-l,t,v(lp1,l),1,v(lp1,j),1) 310 continue 320 continue do 330 i = 1, p v(i,l) = 0.0d0 330 continue v(l,l) = 1.0d0 340 continue 350 continue ! ! main iteration loop for the singular values. ! mm = m iter = 0 360 continue ! ! quit if all the singular values have been found. ! ! ...exit if (m .eq. 0) go to 620 ! ! if too many iterations have been performed, set ! flag and return. ! if (iter .lt. maxit) go to 370 info = m ! ......exit go to 620 370 continue ! ! this section of the program inspects for ! negligible elements in the s and e arrays. on ! completion the variables kase and l are set as follows. ! ! kase = 1 if s(m) and e(l-1) are negligible and l.lt.m ! kase = 2 if s(l) is negligible and l.lt.m ! kase = 3 if e(l-1) is negligible, l.lt.m, and ! s(l), ..., s(m) are not negligible (qr step). ! kase = 4 if e(m-1) is negligible (convergence). ! do 390 ll = 1, m l = m - ll ! ...exit if (l .eq. 0) go to 400 test = dabs(s(l)) + dabs(s(l+1)) ztest = test + dabs(e(l)) if (ztest .ne. test) go to 380 e(l) = 0.0d0 ! ......exit go to 400 380 continue 390 continue 400 continue if (l .ne. m - 1) go to 410 kase = 4 go to 480 410 continue lp1 = l + 1 mp1 = m + 1 do 430 lls = lp1, mp1 ls = m - lls + lp1 ! ...exit if (ls .eq. l) go to 440 test = 0.0d0 if (ls .ne. m) test = test + dabs(e(ls)) if (ls .ne. l + 1) test = test + dabs(e(ls-1)) ztest = test + dabs(s(ls)) if (ztest .ne. test) go to 420 s(ls) = 0.0d0 ! ......exit go to 440 420 continue 430 continue 440 continue if (ls .ne. l) go to 450 kase = 3 go to 470 450 continue if (ls .ne. m) go to 460 kase = 1 go to 470 460 continue kase = 2 l = ls 470 continue 480 continue l = l + 1 ! ! perform the task indicated by kase. ! go to (490,520,540,570), kase ! ! deflate negligible s(m). ! 490 continue mm1 = m - 1 f = e(m-1) e(m-1) = 0.0d0 do 510 kk = l, mm1 k = mm1 - kk + l t1 = s(k) call drotg(t1,f,cs,sn) s(k) = t1 if (k .eq. l) go to 500 f = -sn*e(k-1) e(k-1) = cs*e(k-1) 500 continue if (wantv) call drot(p,v(1,k),1,v(1,m),1,cs,sn) 510 continue go to 610 ! ! split at negligible s(l). ! 520 continue f = e(l-1) e(l-1) = 0.0d0 do 530 k = l, m t1 = s(k) call drotg(t1,f,cs,sn) s(k) = t1 f = -sn*e(k) e(k) = cs*e(k) if (wantu) call drot(n,u(1,k),1,u(1,l-1),1,cs,sn) 530 continue go to 610 ! ! perform one qr step. ! 540 continue ! ! calculate the shift. ! scale = dmax1(dabs(s(m)),dabs(s(m-1)),dabs(e(m-1)), & dabs(s(l)),dabs(e(l))) sm = s(m)/scale smm1 = s(m-1)/scale emm1 = e(m-1)/scale sl = s(l)/scale el = e(l)/scale b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0d0 c = (sm*emm1)**2 shift = 0.0d0 if (b .eq. 0.0d0 .and. c .eq. 0.0d0) go to 550 shift = dsqrt(b**2+c) if (b .lt. 0.0d0) shift = -shift shift = c/(b + shift) 550 continue f = (sl + sm)*(sl - sm) + shift g = sl*el ! ! chase zeros. ! mm1 = m - 1 do 560 k = l, mm1 call drotg(f,g,cs,sn) if (k .ne. l) e(k-1) = f f = cs*s(k) + sn*e(k) e(k) = cs*e(k) - sn*s(k) g = sn*s(k+1) s(k+1) = cs*s(k+1) if (wantv) call drot(p,v(1,k),1,v(1,k+1),1,cs,sn) call drotg(f,g,cs,sn) s(k) = f f = cs*e(k) + sn*s(k+1) s(k+1) = -sn*e(k) + cs*s(k+1) g = sn*e(k+1) e(k+1) = cs*e(k+1) if (wantu .and. k .lt. n) call drot(n,u(1,k),1,u(1,k+1),1,cs,sn) 560 continue e(m-1) = f iter = iter + 1 go to 610 ! ! convergence. ! 570 continue ! ! make the singular value positive. ! if (s(l) .ge. 0.0d0) go to 580 s(l) = -s(l) if (wantv) call dscal(p,-1.0d0,v(1,l),1) 580 continue ! ! order the singular value. ! 590 if (l .eq. mm) go to 600 ! ...exit if (s(l) .ge. s(l+1)) go to 600 t = s(l) s(l) = s(l+1) s(l+1) = t if (wantv .and. l .lt. p) call dswap(p,v(1,l),1,v(1,l+1),1) if (wantu .and. l .lt. n) call dswap(n,u(1,l),1,u(1,l+1),1) l = l + 1 go to 590 600 continue iter = 0 m = m - 1 610 continue go to 360 620 continue return end