#define PIx4 (12.5663706143591724639918) #define PIx2 ( 6.2831853071795862319959) #define PIx1 ( 3.1415926535897931159979) /* * Calculate either the volume or the surface area component of the AGB * nonpolar hydration free energy. Use Eqs 2-15 of Gallicchio and Levy, * J. Comput. Chem. 25: 479 (2004). * * The gbsa option is interpreted as follows: * 0 - no nonpolar calculation * 1 - original LCPO approximation * * Calculate the cavity (volume or surface area) component of the nonpolar * GB energy. Note that for OpenMP execution, the totalvolume and surfacearea * variables are reduction variables. For MPI, the reduction occurs in the * mme34 function via reduction of the ene array. */ if (gbsa == 1) { /* * Main LCPO stuff follows. */ /* Loop over all atoms i. */ count = 0; for (i = 0; i < prm->Natom; i++) { xi = x[3 * i]; yi = x[3 * i + 1]; zi = x[3 * i + 2]; ri = rborn[i] - gboffset; ri1i = 1. / ri; sumi = 0.; /* Select atom j from the pair list. */ for (k = 0; k < lpears[i] + upears[i]; k++) { j = pearlist[i][k]; xij = xi - x[3 * j]; yij = yi - x[3 * j + 1]; zij = zi - x[3 * j + 2]; r2 = xij * xij + yij * yij + zij * zij; if (r2 > rgbmaxpsmax2) continue; dij1i = 1.0 / sqrt(r2); dij = r2 * dij1i; if ((P0[i] + P0[j]) > dij) { if (P0[i] > 2.5 && P0[j] > 2.5) { ineighbor[count] = j + 1; /* this +1 is VERY important */ count += 1; } } } ineighbor[count] = 0; count = count + 1; } totsasa = 0.0; count = 0; for (i = 0; i < prm->Natom; i++) { if (ineighbor[count] == 0) { count = count + 1; } else { si = PIx4 * P0[i] * P0[i]; sumAij = 0.0; sumAjk = 0.0; sumAjk2 = 0.0; sumAijAjk = 0.0; sumdAijddijdxi = 0.0; sumdAijddijdyi = 0.0; sumdAijddijdzi = 0.0; sumdAijddijdxiAjk = 0.0; sumdAijddijdyiAjk = 0.0; sumdAijddijdziAjk = 0.0; icount = count; L70:j = ineighbor[count] - 1; /* mind the -1 , fortran again */ xi = x[3 * i]; yi = x[3 * i + 1]; zi = x[3 * i + 2]; xj = x[3 * j]; yj = x[3 * j + 1]; zj = x[3 * j + 2]; r2 = (xi - xj) * (xi - xj) + (yi - yj) * (yi - yj) + (zi - zj) * (zi - zj); dij1i = 1. / sqrt(r2); rij = r2 * dij1i; tmpaij = P0[i] - rij * 0.5 - (P0[i] * P0[i] - P0[j] * P0[j]) * 0.5 * dij1i; Aij = PIx2 * P0[i] * tmpaij; dAijddij = PIx1 * P0[i] * (dij1i * dij1i * (P0[i] * P0[i] - P0[j] * P0[j]) - 1.0); dAijddijdxj = dAijddij * (xj - xi) * dij1i; dAijddijdyj = dAijddij * (yj - yi) * dij1i; dAijddijdzj = dAijddij * (zj - zi) * dij1i; sumAij = sumAij + Aij; count2 = icount; sumAjk2 = 0.0; sumdAjkddjkdxj = 0.0; sumdAjkddjkdyj = 0.0; sumdAjkddjkdzj = 0.0; p3p4Aij = -surften * (P3[i] + P4[i] * Aij); L80:k = ineighbor[count2] - 1; /*same as above, -1 ! */ if (j == k) goto L85; xk = x[3 * k]; yk = x[3 * k + 1]; zk = x[3 * k + 2]; rjk2 = (xj - xk) * (xj - xk) + (yj - yk) * (yj - yk) + (zj - zk) * (zj - zk); djk1i = 1.0 / sqrt(rjk2); rjk = rjk2 * djk1i; if (P0[j] + P0[k] > rjk) { vdw2dif = P0[j] * P0[j] - P0[k] * P0[k]; tmpajk = 2.0 * P0[j] - rjk - vdw2dif * djk1i; Ajk = PIx1 * P0[j] * tmpajk; sumAjk = sumAjk + Ajk; sumAjk2 = sumAjk2 + Ajk; dAjkddjk = PIx1 * P0[j] * djk1i * (djk1i * djk1i * vdw2dif - 1.0); dAjkddjkdxj = dAjkddjk * (xj - xk); dAjkddjkdyj = dAjkddjk * (yj - yk); dAjkddjkdzj = dAjkddjk * (zj - zk); f[3 * k] = f[3 * k] + dAjkddjkdxj * p3p4Aij; f[3 * k + 1] = f[3 * k + 1] + dAjkddjkdyj * p3p4Aij; f[3 * k + 2] = f[3 * k + 2] + dAjkddjkdzj * p3p4Aij; sumdAjkddjkdxj = sumdAjkddjkdxj + dAjkddjkdxj; sumdAjkddjkdyj = sumdAjkddjkdyj + dAjkddjkdyj; sumdAjkddjkdzj = sumdAjkddjkdzj + dAjkddjkdzj; } L85:count2 = count2 + 1; if (ineighbor[count2] != 0) { goto L80; } else { count2 = icount; } sumAijAjk = sumAijAjk + Aij * sumAjk2; sumdAijddijdxi = sumdAijddijdxi - dAijddijdxj; sumdAijddijdyi = sumdAijddijdyi - dAijddijdyj; sumdAijddijdzi = sumdAijddijdzi - dAijddijdzj; sumdAijddijdxiAjk = sumdAijddijdxiAjk - dAijddijdxj * sumAjk2; sumdAijddijdyiAjk = sumdAijddijdyiAjk - dAijddijdyj * sumAjk2; sumdAijddijdziAjk = sumdAijddijdziAjk - dAijddijdzj * sumAjk2; lastxj = dAijddijdxj * sumAjk2 + Aij * sumdAjkddjkdxj; lastyj = dAijddijdyj * sumAjk2 + Aij * sumdAjkddjkdyj; lastzj = dAijddijdzj * sumAjk2 + Aij * sumdAjkddjkdzj; dAidxj = surften * (P2[i] * dAijddijdxj + P3[i] * sumdAjkddjkdxj + P4[i] * lastxj); dAidyj = surften * (P2[i] * dAijddijdyj + P3[i] * sumdAjkddjkdyj + P4[i] * lastyj); dAidzj = surften * (P2[i] * dAijddijdzj + P3[i] * sumdAjkddjkdzj + P4[i] * lastzj); f[3 * j] = f[3 * j] + dAidxj; f[3 * j + 1] = f[3 * j + 1] + dAidyj; f[3 * j + 2] = f[3 * j + 2] + dAidzj; count = count + 1; if (ineighbor[count] != 0) { goto L70; } else { count = count + 1; } Ai = P1[i] * si + P2[i] * sumAij + P3[i] * sumAjk + P4[i] * sumAijAjk; dAidxi = surften * (P2[i] * sumdAijddijdxi + P4[i] * sumdAijddijdxiAjk); dAidyi = surften * (P2[i] * sumdAijddijdyi + P4[i] * sumdAijddijdyiAjk); dAidzi = surften * (P2[i] * sumdAijddijdzi + P4[i] * sumdAijddijdziAjk); f[3 * i] = f[3 * i] + dAidxi; f[3 * i + 1] = f[3 * i + 1] + dAidyi; f[3 * i + 2] = f[3 * i + 2] + dAidzi; totsasa = totsasa + Ai; /* printf("totsasa up to %d %f\n",i,totsasa); */ } } /* printf("SASA %f , ESURF %f \n",totsasa,totsasa*surften); */ *esurf = totsasa * surften; } else { *esurf = 0.0; }