/* * Integer arithmetic evaluation. * * (c) Thomas Pornin 2002 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. The name of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include "arith.h" #define ARITH_OCTAL(x) ((x) >= '0' && (x) <= '7') #define ARITH_OVAL(x) ((x) - '0') #define ARITH_DECIM(x) ((x) >= '0' && (x) <= '9') #define ARITH_DVAL(x) ((x) - '0') #define ARITH_HEXAD(x) (ARITH_DECIM(x) \ || (x) == 'a' || (x) == 'A' \ || (x) == 'b' || (x) == 'B' \ || (x) == 'c' || (x) == 'C' \ || (x) == 'd' || (x) == 'D' \ || (x) == 'e' || (x) == 'E' \ || (x) == 'f' || (x) == 'F') #define ARITH_HVAL(x) (ARITH_DECIM(x) ? ARITH_DVAL(x) \ : (x) == 'a' || (x) == 'A' ? 10 \ : (x) == 'b' || (x) == 'B' ? 11 \ : (x) == 'c' || (x) == 'C' ? 12 \ : (x) == 'd' || (x) == 'D' ? 13 \ : (x) == 'e' || (x) == 'E' ? 14 : 15) #ifdef NATIVE_SIGNED /* ====================================================================== */ /* Arithmetics with native types */ /* ====================================================================== */ /* * The following properties are imposed by the C standard: * * -- Arithmetics on the unsigned type should never overflow; every * result is reduced modulo some power of 2. The macro NATIVE_UNSIGNED_BITS * should have been defined to that specific exponent. * * -- The signed type should use either two's complement, one's complement * or a sign bit and a magnitude. There should be an integer N such that * the maximum signed value is (2^N)-1 and the minimum signed value is * either -(2^N) or -((2^N)-1). -(2^N) is possible only for two's complement. * * -- The maximum signed value is at most equal to the maximum unsigned * value. * * -- Trap representations can only be: * ** In two's complement, 1 as sign bit and 0 for all value bits. * This can happen only if the minimum signed value is -((2^N)-1). * ** In one's complement, all bits set to 1. * ** In mantissa + sign, sign bit to 1 and 0 for all value bits. * Unsigned values have no trap representation achievable with numerical * operators. Only signed values can have such representations, with * operators &, |, ^, ~, << and >>. If trap representations are possible, * such occurrences are reported as warnings. * * -- The operators +, -, * and << may overflow or underflow on signed * quantities, which is potentially an error. A warning is emitted. * * -- The operator >> yields an implementation-defined result on * signed negative quantities. Usually, the sign is extended, but this * is not guaranteed. A warning is emitted. * * -- The operators / and % used with a second operand of 0 cannot work. * An error is emitted when such a call is performed. Furthermore, in * two's complemement representation, with NATIVE_SIGNED_MIN == -(2^N) * for some N, the expression `NATIVE_SIGNED_MIN / (-1)' yields an * unrepresentable result, which is also an error. * * * For the value checks, we need to consider those different cases. So * we calculate the following macros: * -- TWOS_COMPLEMENT: is 1 if representation is two's complement, 0 * otherwise. * -- ONES_COMPLEMENT: is 1 if representation is one's complement, 0 * otherwise. * -- SIGNED_IS_BIGGER: 1 if the maximum signed value is equal to the * maximum unsigned value, 0 otherwise. NATIVE_SIGNED_MAX cannot * exceed the maximum unsigned value. If SIGNED_IS_BIGGER is 0, then * the maximum unsigned value is strictly superior to twice the * value of NATIVE_SIGNED_MAX (e.g. 65535 to 32767). * -- TRAP_REPRESENTATION: 1 if a trap representation is possible, 0 * otherwise. The only way trap representations are guaranteed * impossible is when TWOS_COMPLEMENT is set, and NATIVE_SIGNED_MIN * is equal to -NATIVE_SIGNED_MAX - 1. * * Those macros are calculated by some preprocessor directives. This * supposes that the implementation conforms to C99. Rules on preprocessing * were quite looser in C90, and it could be that an old compiler, used * for a cross-compiling task, does not get those right. Therefore, if * ARCH_DEFINED is defined prior to the inclusion of this file, those * four macros are supposed to be already defined. Otherwise they are * (re)defined. The macro ARCH_TRAP_DEFINED has the same meaning, but * is limited to the TRAP_REPRESENTATION macro (if ARCH_TRAP_DEFINED is * defined, the macro TRAP_REPRESENTATION is supposed to be already * defined; the three other macros are recalculated). * * * To sum up: * -- Whenever a division operator (/ or %) is invoked and would yield * an unrepresentable result, ARITH_ERROR() is invoked. * -- With ARITHMETIC_CHECKS undefined, ARITH_WARNING() is never invoked. * -- With ARITHMETIC_CHECKS defined: * ** If ARCH_DEFINED is defined, the including context must provide * the macros TWOS_COMPLEMENT, ONES_COMPLEMENT, SIGNED_IS_BIGGER * and TRAP_REPRESENTATION. * ** Otherwise, if ARCH_TRAP_DEFINED is defined, the including context * must provide the macro TRAP_REPRESENTATION. * The code then detects all operator invokations that would yield an * overflow, underflow, trap representation, or any implementation * defined result or undefined behaviour. The macro ARITH_WARNING() is * invoked for each detection. * -- Trap representation detection code supposes that the operands are * _not_ trap representation. */ #ifndef ARCH_DEFINED #undef TWOS_COMPLEMENT #undef ONES_COMPLEMENT #undef SIGNED_IS_BIGGER #ifndef ARCH_TRAP_DEFINED #undef TRAP_REPRESENTATION #endif #if (-1) & 3 == 3 /* * Two's complement. */ #define TWOS_COMPLEMENT 1 #define ONES_COMPLEMENT 0 #ifndef ARCH_TRAP_DEFINED #if NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX #define TRAP_REPRESENTATION 0 #else #define TRAP_REPRESENTATION 1 #endif #endif #elif (-1) & 3 == 2 /* * One's complement. */ #define TWOS_COMPLEMENT 0 #define ONES_COMPLEMENT 1 #ifndef ARCH_TRAP_DEFINED #define TRAP_REPRESENTATION 1 #endif #else /* * Mantissa + sign. */ #define TWOS_COMPLEMENT 0 #define ONES_COMPLEMENT 0 #ifndef ARCH_TRAP_DEFINED #define TRAP_REPRESENTATION 1 #endif #endif /* * Maximum native unsigned value. The first macro is for #if directives, * the second macro is for use as constant expression in C code. */ #define NATIVE_UNSIGNED_MAX ((((1U << (NATIVE_UNSIGNED_BITS - 1)) - 1U) \ << 1) + 1U) #define NATIVE_UNSIGNED_MAX_A (((((arith_u)1 << (NATIVE_UNSIGNED_BITS - 1)) \ - (arith_u)1) << 1) + (arith_u)1) #define SIGNED_IS_BIGGER 1 #endif #undef NEGATIVE_IS_BIGGER #if NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX #define NEGATIVE_IS_BIGGER 1 #else #define NEGATIVE_IS_BIGGER 0 #endif /* sanity check: we cannot have a trap representation if we have two's complement with NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX */ #if TRAP_REPRESENTATION && NEGATIVE_IS_BIGGER #error Impossible to get trap representations. #endif /* operations on the unsigned type */ ARITH_DECL_MONO_S_U(to_u) { return (arith_u)x; } ARITH_DECL_MONO_I_U(fromint) { return (arith_u)x; } ARITH_DECL_MONO_L_U(fromulong) { return (arith_u)x; } ARITH_DECL_MONO_U_I(toint) { return (int)x; } ARITH_DECL_MONO_U_L(toulong) { return (long)x; } ARITH_DECL_MONO_U_U(neg) { return -x; } ARITH_DECL_MONO_U_U(not) { return ~x; } ARITH_DECL_MONO_U_I(lnot) { return !x; } ARITH_DECL_MONO_U_I(lval) { return x != 0; } ARITH_DECL_BI_UU_U(plus) { return x + y; } ARITH_DECL_BI_UU_U(minus) { return x - y; } ARITH_DECL_BI_UU_I(lt) { return x < y; } ARITH_DECL_BI_UU_I(leq) { return x <= y; } ARITH_DECL_BI_UU_I(gt) { return x > y; } ARITH_DECL_BI_UU_I(geq) { return x >= y; } ARITH_DECL_BI_UU_I(same) { return x == y; } ARITH_DECL_BI_UU_I(neq) { return x != y; } ARITH_DECL_BI_UU_U(and) { return x & y; } ARITH_DECL_BI_UU_U(xor) { return x ^ y; } ARITH_DECL_BI_UU_U(or) { return x | y; } ARITH_DECL_BI_UU_U(star) { return x * y; } ARITH_DECL_BI_UI_U(lsh) { #ifdef ARITHMETIC_CHECKS if (y >= NATIVE_UNSIGNED_BITS) ARITH_WARNING(ARITH_EXCEP_LSH_W); else if (y < 0) ARITH_WARNING(ARITH_EXCEP_LSH_C); #endif return x << y; } ARITH_DECL_BI_UI_U(rsh) { #ifdef ARITHMETIC_CHECKS if (y >= NATIVE_UNSIGNED_BITS) ARITH_WARNING(ARITH_EXCEP_RSH_W); else if (y < 0) ARITH_WARNING(ARITH_EXCEP_RSH_C); #endif return x >> y; } ARITH_DECL_BI_UU_U(slash) { if (y == 0) ARITH_ERROR(ARITH_EXCEP_SLASH_D); return x / y; } ARITH_DECL_BI_UU_U(pct) { if (y == 0) ARITH_ERROR(ARITH_EXCEP_PCT_D); return x % y; } /* operations on the signed type */ ARITH_DECL_MONO_U_S(to_s) { #ifdef ARITHMETIC_CHECKS #if !SIGNED_IS_BIGGER if (x > (arith_u)NATIVE_SIGNED_MAX) ARITH_WARNING(ARITH_EXCEP_CONV_O); #endif #endif return (arith_s)x; } ARITH_DECL_MONO_I_S(fromint) { return (arith_s)x; } ARITH_DECL_MONO_L_S(fromlong) { return (arith_s)x; } ARITH_DECL_MONO_S_I(toint) { #if NATIVE_SIGNED_MIN < INT_MIN if (x < (arith_s)INT_MIN) return INT_MIN; #endif #if NATIVE_SIGNED_MAX > INT_MAX if (x > (arith_s)INT_MAX) return INT_MAX; #endif return (int)x; } ARITH_DECL_MONO_S_L(tolong) { #if NATIVE_SIGNED_MIN < LONG_MIN if (x < (arith_s)LONG_MIN) return LONG_MIN; #endif #if NATIVE_SIGNED_MAX > LONG_MAX if (x > (arith_s)LONG_MAX) return LONG_MAX; #endif return (long)x; } ARITH_DECL_MONO_S_S(neg) { #ifdef ARITHMETIC_CHECKS #if NEGATIVE_IS_BIGGER if (x == NATIVE_SIGNED_MIN) ARITH_WARNING(ARITH_EXCEP_NEG_O); #endif #endif return -x; } ARITH_DECL_MONO_S_S(not) { #ifdef ARITHMETIC_CHECKS #if TRAP_REPRESENTATION if ( #if TWOS_COMPLEMENT (x == NATIVE_SIGNED_MAX) #elif ONES_COMPLEMENT (x == 0) #else (x == NATIVE_SIGNED_MAX) #endif ) ARITH_WARNING(ARITH_EXCEP_NOT_T); #endif #endif return ~x; } ARITH_DECL_MONO_S_I(lnot) { return !x; } ARITH_DECL_MONO_S_I(lval) { return x != 0; } /* * Addition of signed values: * -- overflows occur only when both operands are strictly positive * -- underflows occur only when both operands are strictly negative * -- overflow check (both operands > 0): * ** if SIGNED_IS_BIGGER == 1, overflows are kept as such in the * unsigned world (if the signed addition overflows, so does the * unsigned, and vice versa) * ** if SIGNED_IS_BIGGER == 0, no overflow can happen in the unsigned * world * -- underflow check (both operands < 0): * ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement) * ++ we have a guaranteed underflow if one of the operand is equal * to NATIVE_SIGNED_MIN; otherwise, -x and -y are valid integers, * and we cast them into the unsigned world * ++ if SIGNED_IS_BIGGER == 1, underflows become unsigned overflows * with a non-zero result * ++ if SIGNED_IS_BIGGER == 0, no overflow happens in the unsigned * world; we use the fact that -NATIVE_SIGNED_MIN is then * exaxctly 1 more than NATIVE_SIGNED_MAX * ** if NEGATIVE_IS_BIGGER == 0, underflow check is identical to * overflow check on (signed) -x and -y. */ ARITH_DECL_BI_SS_S(plus) { #ifdef ARITHMETIC_CHECKS if (x > 0 && y > 0 && ( #if SIGNED_IS_BIGGER ((arith_u)((arith_u)x + (arith_u)y) < (arith_u)x) #else (((arith_u)x + (arith_u)y) > (arith_u)NATIVE_SIGNED_MAX) #endif )) ARITH_WARNING(ARITH_EXCEP_PLUS_O); else if (x < 0 && y < 0 && ( #if NEGATIVE_IS_BIGGER (x == NATIVE_SIGNED_MIN || y == NATIVE_SIGNED_MIN) || #if SIGNED_IS_BIGGER (((arith_u)(-x) + (arith_u)(-y) != 0) && (arith_u)((arith_u)(-x) + (arith_u)(-y)) < (arith_u)(-x)) #else (((arith_u)(-x) + (arith_u)(-y)) > ((arith_u)1 + (arith_u)NATIVE_SIGNED_MAX)) #endif #else #if SIGNED_IS_BIGGER ((arith_u)((arith_u)(-x) + (arith_u)(-y)) < (arith_u)(-x)) #else (((arith_u)(-x) + (arith_u)(-y)) > (arith_u)NATIVE_SIGNED_MAX) #endif #endif )) ARITH_WARNING(ARITH_EXCEP_PLUS_U); #endif return x + y; } /* * Subtraction of signed values: * -- overflow: only if x > 0 and y < 0 * ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement) and * y == NATIVE_SIGNED_MIN then overflow * ** otherwise, cast x and -y to unsigned, then add and check * for overflows * -- underflow: only if x < 0 and y > 0 * ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement): * ++ if x == NATIVE_SIGNED_MIN then underflow * ++ cast -x and y to unsigned, then add. If SIGNED_IS_BIGGER == 0, * just check. Otherwise, check for overflow with non-zero result. * ** if NEGATIVE_IS_BIGGER == 0: cast -x and y to unsigned, then * add. Overflow check as in addition. */ ARITH_DECL_BI_SS_S(minus) { #ifdef ARITHMETIC_CHECKS if (x > 0 && y < 0 && ( #if NEGATIVE_IS_BIGGER (y == NATIVE_SIGNED_MIN) || #endif #if SIGNED_IS_BIGGER ((arith_u)((arith_u)x + (arith_u)(-y)) < (arith_u)x) #else (((arith_u)x + (arith_u)(-y)) > (arith_u)NATIVE_SIGNED_MAX) #endif )) ARITH_WARNING(ARITH_EXCEP_MINUS_O); else if (x < 0 && y > 0 && ( #if NEGATIVE_IS_BIGGER (x == NATIVE_SIGNED_MIN) || #if SIGNED_IS_BIGGER ((((arith_u)(-x) + (arith_u)y) != 0) && ((arith_u)((arith_u)(-x) + (arith_u)y) < (arith_u)(-x))) #else (((arith_u)(-x) + (arith_u)y) > ((arith_u)1 + (arith_u)NATIVE_SIGNED_MAX)) #endif #else #if SIGNED_IS_BIGGER ((arith_u)((arith_u)(-x) + (arith_u)y) < (arith_u)(-x)) #else (((arith_u)(-x) + (arith_u)y) > (arith_u)NATIVE_SIGNED_MAX) #endif #endif )) ARITH_WARNING(ARITH_EXCEP_MINUS_U); #endif return x - y; } ARITH_DECL_BI_SS_I(lt) { return x < y; } ARITH_DECL_BI_SS_I(leq) { return x <= y; } ARITH_DECL_BI_SS_I(gt) { return x > y; } ARITH_DECL_BI_SS_I(geq) { return x >= y; } ARITH_DECL_BI_SS_I(same) { return x == y; } ARITH_DECL_BI_SS_I(neq) { return x != y; } /* * Provided neither x nor y is a trap representation: * -- one's complement: impossible to get a trap representation * -- two's complement and sign + mantissa: trap representation if and * only if x and y are strictly negative and (-x) & (-y) == 0 * (in two's complement, -x is safe because overflow would occur only * if x was already a trap representation). */ ARITH_DECL_BI_SS_S(and) { #ifdef ARITHMETIC_CHECKS #if TRAP_REPRESENTATION && !ONES_COMPLEMENT if (x < 0 && y < 0 && ((-x) & (-y)) == 0) ARITH_WARNING(ARITH_EXCEP_AND_T); #endif #endif return x & y; } /* * Provided neither x nor y is a trap representation: * -- two's complement: trap if and only if x != NATIVE_SIGNED_MAX && ~x == y * -- one's complement: trap if and only if x != 0 && ~x == y * -- mantissa + sign: trap if and only if x != 0 && -x == y */ ARITH_DECL_BI_SS_S(xor) { #ifdef ARITHMETIC_CHECKS #if TRAP_REPRESENTATION if ( #if TWOS_COMPLEMENT (x != NATIVE_SIGNED_MAX && ~x == y) #elif ONES_COMPLEMENT (x != 0 && ~x == y) #else (x != 0 && -x == y) #endif ) ARITH_WARNING(ARITH_EXCEP_XOR_T); #endif #endif return x ^ y; } /* * Provided neither x nor y is a trap representation: * -- two's complement: impossible to trap * -- one's complement: trap if and only if x != 0 && y != 0 && (~x & ~y) == 0 * -- mantissa + sign: impossible to trap */ ARITH_DECL_BI_SS_S(or) { #ifdef ARITHMETIC_CHECKS #if TRAP_REPRESENTATION #if ONES_COMPLEMENT if (x != 0 && y != 0 && (~x & ~y) == 0) ARITH_WARNING(ARITH_EXCEP_OR_T); #endif #endif #endif return x | y; } /* * Left-shifting by a negative or greater than type width count is * forbidden. Left-shifting a negative value is forbidden (underflow). * Left-shifting a positive value can trigger an overflow. We check it * by casting into the unsigned world and simulating a truncation. * * If SIGNED_IS_BIGGER is set, then the signed type width is 1 more * than the unsigned type width (the sign bit is included in the width); * otherwise, if W is the signed type width, 1U << (W-1) is equal to * NATIVE_SIGNED_MAX + 1. */ ARITH_DECL_BI_SI_S(lsh) { #ifdef ARITHMETIC_CHECKS if (y < 0) ARITH_WARNING(ARITH_EXCEP_LSH_C); else if ( #if SIGNED_IS_BIGGER y > NATIVE_UNSIGNED_BITS #else y >= NATIVE_UNSIGNED_BITS || (y > 0 && (((arith_u)1 << (y - 1)) > (arith_u)NATIVE_SIGNED_MAX)) #endif ) ARITH_WARNING(ARITH_EXCEP_LSH_W); else if (x < 0) ARITH_WARNING(ARITH_EXCEP_LSH_U); else if (x > 0 && ((((arith_u)x << y) & NATIVE_SIGNED_MAX) >> y) != (arith_u)x) ARITH_WARNING(ARITH_EXCEP_LSH_O); #endif return x << y; } /* * Right-shifting is handled as left-shifting, except that the problem * is somehow simpler: there is no possible overflow or underflow. Only * right-shifting a negative value yields an implementation defined * result (_not_ an undefined behaviour). */ ARITH_DECL_BI_SI_S(rsh) { #ifdef ARITHMETIC_CHECKS if (y < 0) ARITH_WARNING(ARITH_EXCEP_RSH_C); else if ( #if SIGNED_IS_BIGGER y > NATIVE_UNSIGNED_BITS #else y >= NATIVE_UNSIGNED_BITS || (y > 0 && (((arith_u)1 << (y - 1)) > (arith_u)NATIVE_SIGNED_MAX)) #endif ) ARITH_WARNING(ARITH_EXCEP_RSH_W); else if (x < 0) ARITH_WARNING(ARITH_EXCEP_RSH_N); #endif return x >> y; } /* * Overflow can happen only if both operands have the same sign. * Underflow can happen only if both operands have opposite signs. * * Overflow checking: this is done quite inefficiently by performing * a division on the result and check if it matches the initial operand. */ ARITH_DECL_BI_SS_S(star) { #ifdef ARITHMETIC_CHECKS if (x == 0 || y == 0) return 0; if (x > 0 && y > 0) { if ((((arith_u)x * (arith_u)y) & (arith_u)NATIVE_SIGNED_MAX) / (arith_u)y != (arith_u)x) ARITH_WARNING(ARITH_EXCEP_STAR_O); } else if (x < 0 && y < 0) { if ( #if NEGATIVE_IS_BIGGER (x == NATIVE_SIGNED_MIN || y == NATIVE_SIGNED_MIN) || #endif (((arith_u)(-x) * (arith_u)(-y)) & (arith_u)NATIVE_SIGNED_MAX) / (arith_u)(-y) != (arith_u)(-x)) ARITH_WARNING(ARITH_EXCEP_STAR_O); } else if (x > 0 && y < 0) { if ((arith_u)x > (arith_u)1 && ( #if NEGATIVE_IS_BIGGER y == NATIVE_SIGNED_MIN || #endif (((arith_u)x * (arith_u)(-y)) & (arith_u)NATIVE_SIGNED_MAX) / (arith_u)(-y) != (arith_u)x)) ARITH_WARNING(ARITH_EXCEP_STAR_U); } else { if ((arith_u)y > (arith_u)1 && ( #if NEGATIVE_IS_BIGGER x == NATIVE_SIGNED_MIN || #endif (((arith_u)y * (arith_u)(-x)) & (arith_u)NATIVE_SIGNED_MAX) / (arith_u)(-x) != (arith_u)y)) ARITH_WARNING(ARITH_EXCEP_STAR_U); } #endif return x * y; } /* * Division by 0 is an error. The only other possible problem is an * overflow of the result. Such an overflow can only happen in two's * complement representation, when NEGATIVE_IS_BIGGER is set, and * one attempts to divide NATIVE_SIGNED_MIN by -1: the result is then * -NATIVE_SIGNED_MIN, which is not representable by the type. This is * considered as an error, not a warning, because it actually triggers * an exception on modern Pentium-based PC. */ ARITH_DECL_BI_SS_S(slash) { if (y == 0) ARITH_ERROR(ARITH_EXCEP_SLASH_D); #if NEGATIVE_IS_BIGGER else if (x == NATIVE_SIGNED_MIN && y == (arith_s)(-1)) ARITH_ERROR(ARITH_EXCEP_SLASH_O); #endif return x / y; } /* * Only division by 0 needs to be checked. */ ARITH_DECL_BI_SS_S(pct) { if (y == 0) ARITH_ERROR(ARITH_EXCEP_PCT_D); return x % y; } ARITH_DECL_MONO_ST_US(octconst) { arith_u z = 0; for (; ARITH_OCTAL(*c); c ++) { arith_u w = ARITH_OVAL(*c); if (z > (NATIVE_UNSIGNED_MAX_A / 8)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z *= 8; #if 0 /* obsolete */ /* NATIVE_UNSIGNED_MAX_A is 2^N - 1, 0 <= w <= 7 and 8 divides z */ if (z > (NATIVE_UNSIGNED_MAX_A - w)) ARITH_ERROR(ARITH_EXCEP_CONST_O); #endif z += w; } *ru = z; #if SIGNED_IS_BIGGER *rs = z; *sp = 1; #else if (z > NATIVE_SIGNED_MAX) { *sp = 0; } else { *rs = z; *sp = 1; } #endif return c; } ARITH_DECL_MONO_ST_US(decconst) { arith_u z = 0; for (; ARITH_DECIM(*c); c ++) { arith_u w = ARITH_DVAL(*c); if (z > (NATIVE_UNSIGNED_MAX_A / 10)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z *= 10; if (z > (NATIVE_UNSIGNED_MAX_A - w)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z += w; } *ru = z; #if SIGNED_IS_BIGGER *rs = z; *sp = 1; #else if (z > NATIVE_SIGNED_MAX) { *sp = 0; } else { *rs = z; *sp = 1; } #endif return c; } ARITH_DECL_MONO_ST_US(hexconst) { arith_u z = 0; for (; ARITH_HEXAD(*c); c ++) { arith_u w = ARITH_HVAL(*c); if (z > (NATIVE_UNSIGNED_MAX_A / 16)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z *= 16; #if 0 /* obsolete */ /* NATIVE_UNSIGNED_MAX_A is 2^N - 1, 0 <= w <= 15 and 16 divides z */ if (z > (NATIVE_UNSIGNED_MAX_A - w)) ARITH_ERROR(ARITH_EXCEP_CONST_O); #endif z += w; } *ru = z; #if SIGNED_IS_BIGGER *rs = z; *sp = 1; #else if (z > NATIVE_SIGNED_MAX) { *sp = 0; } else { *rs = z; *sp = 1; } #endif return c; } #else /* ====================================================================== */ /* Arithmetics with a simple simulated type */ /* ====================================================================== */ /* * We simulate a type with the following characteristics: * -- the signed type width is equal to the unsigned type width (which * means that there is one less value bit in the signed type); * -- the signed type uses two's complement representation; * -- there is no trap representation; * -- overflows and underflows are truncated (but a warning is emitted * if ARITHMETIC_CHECKS is defined); * -- overflow on integer division is still an error; * -- right-shifting of a negative value extends the sign; * -- the shift count value is first cast to unsigned, then reduced modulo * the type size. * * These characteristics follow what is usually found on modern * architectures. * * The maximum emulated type size is twice the size of the unsigned native * type which is used to emulate the type. */ #undef SIMUL_ONE_TMP #undef SIMUL_MSW_TMP1 #undef SIMUL_MSW_MASK #undef SIMUL_LSW_TMP1 #undef SIMUL_LSW_MASK #define SIMUL_ONE_TMP ((SIMUL_ARITH_SUBTYPE)1) #define SIMUL_MSW_TMP1 (SIMUL_ONE_TMP << (SIMUL_MSW_WIDTH - 1)) #define SIMUL_MSW_MASK (SIMUL_MSW_TMP1 | (SIMUL_MSW_TMP1 - SIMUL_ONE_TMP)) #define SIMUL_LSW_TMP1 (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1)) #define SIMUL_LSW_MASK (SIMUL_LSW_TMP1 | (SIMUL_LSW_TMP1 - SIMUL_ONE_TMP)) #undef TMSW #undef TLSW #define TMSW(x) ((x) & SIMUL_MSW_MASK) #define TLSW(x) ((x) & SIMUL_LSW_MASK) #undef SIMUL_ZERO #undef SIMUL_ONE #define SIMUL_ZERO arith_strc(ARITH_TYPENAME, _zero) #define SIMUL_ONE arith_strc(ARITH_TYPENAME, _one) static arith_u SIMUL_ZERO = { 0, 0 }; static arith_u SIMUL_ONE = { 0, 1 }; /* * We use the fact that both the signed and unsigned type are the same * structure. The difference between the signed and the unsigned type * is a type information, and, as such, is considered compile-time and * not maintained in the value structure itself. This is a job for * the programmer / compiler. */ ARITH_DECL_MONO_S_U(to_u) { return x; } ARITH_DECL_MONO_I_U(fromint) { arith_u z; if (x < 0) return arith_op_u(neg)(arith_op_u(fromint)(-x)); /* * This code works because types smaller than int are promoted * by the C compiler before evaluating the >> operator. */ z.msw = TMSW(((SIMUL_ARITH_SUBTYPE)x >> (SIMUL_LSW_WIDTH - 1)) >> 1); z.lsw = TLSW((SIMUL_ARITH_SUBTYPE)x); return z; } ARITH_DECL_MONO_L_U(fromulong) { arith_u z; #if (ULONG_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1 == 0 z.msw = 0; z.lsw = x; #else z.msw = TMSW(x >> SIMUL_LSW_WIDTH); z.lsw = TLSW((SIMUL_ARITH_SUBTYPE)x); #endif return z; } ARITH_DECL_MONO_U_I(toint) { #if ((INT_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1) == 0 if (x.msw != 0 || x.lsw > (SIMUL_ARITH_SUBTYPE)INT_MAX) return INT_MAX; return (int)x.lsw; #else #if (INT_MAX >> (SIMUL_SUBTYPE_BITS - 1)) == 0 if (x.msw > (SIMUL_ARITH_SUBTYPE)(INT_MAX >> SIMUL_LSW_WIDTH)) return INT_MAX; #endif return ((int)x.msw << SIMUL_LSW_WIDTH) | (int)x.lsw; #endif } ARITH_DECL_MONO_U_L(toulong) { #if ((ULONG_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1) == 0 if (x.msw != 0 || x.lsw > (SIMUL_ARITH_SUBTYPE)ULONG_MAX) return ULONG_MAX; return (unsigned long)x.lsw; #else #if (ULONG_MAX >> (SIMUL_SUBTYPE_BITS - 1)) == 0 if (x.msw > (SIMUL_ARITH_SUBTYPE)(ULONG_MAX >> SIMUL_LSW_WIDTH)) return ULONG_MAX; #endif return ((unsigned long)x.msw << SIMUL_LSW_WIDTH) | (unsigned long)x.lsw; #endif } ARITH_DECL_MONO_U_U(neg) { x = arith_op_u(not)(x); return arith_op_u(plus)(x, SIMUL_ONE); } ARITH_DECL_MONO_U_U(not) { x.msw = TMSW(~x.msw); x.lsw = TLSW(~x.lsw); return x; } ARITH_DECL_MONO_U_I(lnot) { return x.msw == 0 && x.lsw == 0; } ARITH_DECL_MONO_U_I(lval) { return x.msw != 0 || x.lsw != 0; } ARITH_DECL_BI_UU_U(plus) { x.lsw = TLSW(x.lsw + y.lsw); x.msw = TMSW(x.msw + y.msw); if (x.lsw < y.lsw) x.msw = TMSW(x.msw + 1); return x; } ARITH_DECL_BI_UU_U(minus) { return arith_op_u(plus)(x, arith_op_u(neg)(y)); } ARITH_DECL_BI_UI_U(lsh) { if (y == 0) return x; #ifdef ARITHMETIC_CHECKS if (y < 0) ARITH_WARNING(ARITH_EXCEP_LSH_C); else if (y >= SIMUL_NUMBITS) ARITH_WARNING(ARITH_EXCEP_LSH_W); #endif y = (unsigned)y % SIMUL_NUMBITS; if (y >= SIMUL_LSW_WIDTH) { /* * We use here the fact that the LSW size is always * equal to or greater than the MSW size. */ x.msw = TMSW(x.lsw << (y - SIMUL_LSW_WIDTH)); x.lsw = 0; return x; } x.msw = TMSW((x.msw << y) | (x.lsw >> (SIMUL_LSW_WIDTH - y))); x.lsw = TLSW(x.lsw << y); return x; } ARITH_DECL_BI_UI_U(rsh) { #ifdef ARITHMETIC_CHECKS if (y < 0) ARITH_WARNING(ARITH_EXCEP_RSH_C); else if (y >= SIMUL_NUMBITS) ARITH_WARNING(ARITH_EXCEP_RSH_W); #endif y = (unsigned)y % SIMUL_NUMBITS; if (y >= SIMUL_LSW_WIDTH) { x.lsw = x.msw >> (y - SIMUL_LSW_WIDTH); x.msw = 0; return x; } x.lsw = TLSW((x.lsw >> y) | (x.msw << (SIMUL_LSW_WIDTH - y))); x.msw >>= y; return x; } ARITH_DECL_BI_UU_I(lt) { return x.msw < y.msw || (x.msw == y.msw && x.lsw < y.lsw); } ARITH_DECL_BI_UU_I(leq) { return x.msw < y.msw || (x.msw == y.msw && x.lsw <= y.lsw); } ARITH_DECL_BI_UU_I(gt) { return arith_op_u(lt)(y, x); } ARITH_DECL_BI_UU_I(geq) { return arith_op_u(leq)(y, x); } ARITH_DECL_BI_UU_I(same) { return x.msw == y.msw && x.lsw == y.lsw; } ARITH_DECL_BI_UU_I(neq) { return !arith_op_u(same)(x, y); } ARITH_DECL_BI_UU_U(and) { x.msw &= y.msw; x.lsw &= y.lsw; return x; } ARITH_DECL_BI_UU_U(xor) { x.msw ^= y.msw; x.lsw ^= y.lsw; return x; } ARITH_DECL_BI_UU_U(or) { x.msw |= y.msw; x.lsw |= y.lsw; return x; } #undef SIMUL_LSW_ODDLEN #undef SIMUL_LSW_HALFLEN #undef SIMUL_LSW_HALFMASK #define SIMUL_LSW_ODDLEN (SIMUL_LSW_WIDTH & 1) #define SIMUL_LSW_HALFLEN (SIMUL_LSW_WIDTH / 2) #define SIMUL_LSW_HALFMASK (~(~(SIMUL_ARITH_SUBTYPE)0 << SIMUL_LSW_HALFLEN)) ARITH_DECL_BI_UU_U(star) { arith_u z; SIMUL_ARITH_SUBTYPE a = x.lsw, b = y.lsw, t00, t01, t10, t11, c = 0, t; #if SIMUL_LSW_ODDLEN SIMUL_ARITH_SUBTYPE bms = b & (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1)); b &= ~(SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1)); #endif t00 = (a & SIMUL_LSW_HALFMASK) * (b & SIMUL_LSW_HALFMASK); t01 = (a & SIMUL_LSW_HALFMASK) * (b >> SIMUL_LSW_HALFLEN); t10 = (a >> SIMUL_LSW_HALFLEN) * (b & SIMUL_LSW_HALFMASK); t11 = (a >> SIMUL_LSW_HALFLEN) * (b >> SIMUL_LSW_HALFLEN); t = z.lsw = t00; z.lsw = TLSW(z.lsw + (t01 << SIMUL_LSW_HALFLEN)); if (t > z.lsw) c ++; t = z.lsw; z.lsw = TLSW(z.lsw + (t10 << SIMUL_LSW_HALFLEN)); if (t > z.lsw) c ++; #if SIMUL_LSW_ODDLEN t = z.lsw; z.lsw = TLSW(z.lsw + (t11 << (2 * SIMUL_LSW_HALFLEN))); if (t > z.lsw) c ++; if (bms && (a & SIMUL_ONE_TMP)) { t = z.lsw; z.lsw = TLSW(z.lsw + b); if (t > z.lsw) c ++; } #endif z.msw = TMSW(x.lsw * y.msw + x.msw * y.lsw + c + (t01 >> (SIMUL_LSW_WIDTH - SIMUL_LSW_HALFLEN)) + (t10 >> (SIMUL_LSW_WIDTH - SIMUL_LSW_HALFLEN)) + (t11 >> (SIMUL_LSW_WIDTH - (2 * SIMUL_LSW_HALFLEN)))); return z; } /* * This function calculates the unsigned integer division, yielding * both quotient and remainder. The divider (y) MUST be non-zero. */ static void arith_op_u(udiv)(arith_u x, arith_u y, arith_u *q, arith_u *r) { int i, j; arith_u a; *q = SIMUL_ZERO; for (i = SIMUL_NUMBITS - 1; i >= 0; i --) { if (i >= (int)SIMUL_LSW_WIDTH && (y.msw & (SIMUL_ONE_TMP << (i - SIMUL_LSW_WIDTH)))) break; if (i < (int)SIMUL_LSW_WIDTH && (y.lsw & (SIMUL_ONE_TMP << i))) break; } a = arith_op_u(lsh)(y, SIMUL_NUMBITS - 1 - i); for (j = SIMUL_NUMBITS - 1 - i; j >= SIMUL_LSW_WIDTH; j --) { if (arith_op_u(leq)(a, x)) { x = arith_op_u(minus)(x, a); q->msw |= SIMUL_ONE_TMP << (j - SIMUL_LSW_WIDTH); } a = arith_op_u(rsh)(a, 1); } for (; j >= 0; j --) { if (arith_op_u(leq)(a, x)) { x = arith_op_u(minus)(x, a); q->lsw |= SIMUL_ONE_TMP << j; } a = arith_op_u(rsh)(a, 1); } *r = x; } ARITH_DECL_BI_UU_U(slash) { arith_u q, r; if (arith_op_u(same)(y, SIMUL_ZERO)) ARITH_ERROR(ARITH_EXCEP_SLASH_D); arith_op_u(udiv)(x, y, &q, &r); return q; } ARITH_DECL_BI_UU_U(pct) { arith_u q, r; if (arith_op_u(same)(y, SIMUL_ZERO)) ARITH_ERROR(ARITH_EXCEP_PCT_D); arith_op_u(udiv)(x, y, &q, &r); return r; } #undef SIMUL_TRAP #undef SIMUL_TRAPL #define SIMUL_TRAP (SIMUL_ONE_TMP << (SIMUL_MSW_WIDTH - 1)) #define SIMUL_TRAPL (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1)) ARITH_DECL_MONO_U_S(to_s) { #ifdef ARITHMETIC_CHECKS if (x.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_CONV_O); #endif return x; } ARITH_DECL_MONO_I_S(fromint) { return arith_op_u(fromint)(x); } ARITH_DECL_MONO_L_S(fromlong) { if (x < 0) return arith_op_u(neg)( arith_op_u(fromulong)((unsigned long)(-x))); return arith_op_u(fromulong)((unsigned long)x); } ARITH_DECL_MONO_S_I(toint) { if (x.msw & SIMUL_TRAP) return -arith_op_u(toint)(arith_op_u(neg)(x)); return arith_op_u(toint)(x); } ARITH_DECL_MONO_S_L(tolong) { if (x.msw & SIMUL_TRAP) return -(long)arith_op_u(toulong)(arith_op_u(neg)(x)); return (long)arith_op_u(toulong)(x); } ARITH_DECL_MONO_S_S(neg) { #ifdef ARITHMETIC_CHECKS if (x.lsw == 0 && x.msw == SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_NEG_O); #endif return arith_op_u(neg)(x); } ARITH_DECL_MONO_S_S(not) { return arith_op_u(not)(x); } ARITH_DECL_MONO_S_I(lnot) { return arith_op_u(lnot)(x); } ARITH_DECL_MONO_S_I(lval) { return arith_op_u(lval)(x); } ARITH_DECL_BI_SS_S(plus) { arith_u z = arith_op_u(plus)(x, y); #ifdef ARITHMETIC_CHECKS if (x.msw & y.msw & ~z.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_PLUS_U); else if (~x.msw & ~y.msw & z.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_PLUS_O); #endif return z; } ARITH_DECL_BI_SS_S(minus) { arith_s z = arith_op_u(minus)(x, y); #ifdef ARITHMETIC_CHECKS if (x.msw & ~y.msw & ~z.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_MINUS_U); else if (~x.msw & y.msw & z.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_MINUS_O); #endif return z; } /* * Since signed and unsigned widths are equal for the simulated type, * we can use the unsigned left shift function, which performs the * the checks on the type width. */ ARITH_DECL_BI_SI_S(lsh) { arith_s z = arith_op_u(lsh)(x, y); #ifdef ARITHMETIC_CHECKS if (x.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_LSH_U); else { /* * To check for possible overflow, we right shift the * result. We need to make the shift count proper so that * we do not emit a double-warning. Besides, the left shift * could have been untruncated but yet affet the sign bit, * so we must test this explicitly. */ arith_s w = arith_op_u(rsh)(z, (unsigned)y % SIMUL_NUMBITS); if ((z.msw & SIMUL_TRAP) || w.msw != x.msw || w.lsw != x.lsw) ARITH_WARNING(ARITH_EXCEP_LSH_O); } #endif return z; } /* * We define that right shifting a negative value, besides being worth a * warning, duplicates the sign bit. This is the most useful and most * usually encountered behaviour, and the standard allows it. */ ARITH_DECL_BI_SI_S(rsh) { int xn = (x.msw & SIMUL_TRAP) != 0; arith_s z = arith_op_u(rsh)(x, y); int gy = (unsigned)y % SIMUL_NUMBITS; #ifdef ARITHMETIC_CHECKS if (xn) ARITH_WARNING(ARITH_EXCEP_RSH_N); #endif if (xn && gy > 0) { if (gy <= SIMUL_MSW_WIDTH) { z.msw |= TMSW(~(SIMUL_MSW_MASK >> gy)); } else { z.msw = SIMUL_MSW_MASK; z.lsw |= TLSW(~(SIMUL_LSW_MASK >> (gy - SIMUL_MSW_WIDTH))); } } return z; } ARITH_DECL_BI_SS_I(lt) { int xn = (x.msw & SIMUL_TRAP) != 0; int yn = (y.msw & SIMUL_TRAP) != 0; if (xn == yn) { return x.msw < y.msw || (x.msw == y.msw && x.lsw < y.lsw); } else { return xn; } } ARITH_DECL_BI_SS_I(leq) { int xn = (x.msw & SIMUL_TRAP) != 0; int yn = (y.msw & SIMUL_TRAP) != 0; if (xn == yn) { return x.msw < y.msw || (x.msw == y.msw && x.lsw <= y.lsw); } else { return xn; } } ARITH_DECL_BI_SS_I(gt) { return arith_op_s(lt)(y, x); } ARITH_DECL_BI_SS_I(geq) { return arith_op_s(leq)(y, x); } ARITH_DECL_BI_SS_I(same) { return x.msw == y.msw && x.lsw == y.lsw; } ARITH_DECL_BI_SS_I(neq) { return !arith_op_s(same)(x, y); } ARITH_DECL_BI_SS_S(and) { return arith_op_u(and)(x, y); } ARITH_DECL_BI_SS_S(xor) { return arith_op_u(xor)(x, y); } ARITH_DECL_BI_SS_S(or) { return arith_op_u(or)(x, y); } /* * This function calculates the signed integer division, yielding * both quotient and remainder. The divider (y) MUST be non-zero. */ static void arith_op_s(sdiv)(arith_s x, arith_s y, arith_s *q, arith_s *r) { arith_u a = x, b = y, c, d; int xn = 0, yn = 0; if (x.msw & SIMUL_TRAP) { a = arith_op_u(neg)(x); xn = 1; } if (y.msw & SIMUL_TRAP) { b = arith_op_u(neg)(y); yn = 1; } arith_op_u(udiv)(a, b, &c, &d); if (xn != yn) *q = arith_op_u(neg)(c); else *q = c; if (xn != yn) *r = arith_op_u(neg)(d); else *r = d; } /* * Overflow/underflow check is done the following way: obvious cases * are checked (both upper words non-null, both upper words null...) * and border-line occurrences are verified with an unsigned division * (which is quite computationaly expensive). */ ARITH_DECL_BI_SS_S(star) { #ifdef ARITHMETIC_CHECKS arith_s z = arith_op_u(star)(x, y); int warn = 0; if (x.msw > 0) { if (y.msw > 0 #if SIMUL_LSW_ODDLEN || (y.lsw & SIMUL_TRAPL) #endif ) warn = 1; } #if SIMUL_LSW_ODDLEN else if (y.msw > 0 && (x.lsw & SIMUL_TRAPL)) warn = 1; #endif if (!warn && (x.msw > 0 || y.msw > 0 #if SIMUL_LSW_ODDLEN || ((x.lsw | y.lsw) & SIMUL_TRAPL) #endif )) { if (x.msw == SIMUL_MSW_MASK && x.lsw == SIMUL_LSW_MASK) { if (y.msw == SIMUL_TRAP && y.lsw == 0) warn = 1; } else if (!(x.msw == 0 && x.lsw == 0) && !arith_op_s(same)(arith_op_s(slash)(z, x), y)) { } warn = 1; } if (warn) ARITH_WARNING(((x.msw ^ y.msw) & SIMUL_TRAP) ? ARITH_EXCEP_STAR_U : ARITH_EXCEP_STAR_O); return z; #else return arith_op_u(star)(x, y); #endif } ARITH_DECL_BI_SS_S(slash) { arith_s q, r; if (arith_op_s(same)(y, SIMUL_ZERO)) ARITH_ERROR(ARITH_EXCEP_SLASH_D); else if (x.msw == SIMUL_TRAP && x.lsw == 0 && y.msw == SIMUL_MSW_MASK && y.lsw == SIMUL_LSW_MASK) ARITH_ERROR(ARITH_EXCEP_SLASH_O); arith_op_s(sdiv)(x, y, &q, &r); return q; } ARITH_DECL_BI_SS_S(pct) { arith_s q, r; if (arith_op_s(same)(y, SIMUL_ZERO)) ARITH_ERROR(ARITH_EXCEP_PCT_D); arith_op_s(sdiv)(x, y, &q, &r); return r; } ARITH_DECL_MONO_ST_US(octconst) { arith_u z = { 0, 0 }; for (; ARITH_OCTAL(*c); c ++) { unsigned w = ARITH_OVAL(*c); if (z.msw > (SIMUL_MSW_MASK / 8)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z = arith_op_u(lsh)(z, 3); z.lsw |= w; } *ru = z; if (z.msw & SIMUL_TRAP) { *sp = 0; } else { *rs = z; *sp = 1; } return c; } ARITH_DECL_MONO_ST_US(decconst) { #define ARITH_ALPHA_TRAP (1U << (SIMUL_MSW_WIDTH - 1)) #define ARITH_ALPHA_MASK (ARITH_ALPHA_TRAP | (ARITH_ALPHA_TRAP - 1)) #define ARITH_ALPHA ((ARITH_ALPHA_MASK - 10 * (ARITH_ALPHA_TRAP / 5)) + 1) #define ARITH_ALPHA_A ((SIMUL_MSW_MASK - 10 * (SIMUL_TRAP / 5)) + 1) arith_u z = { 0, 0 }; for (; ARITH_DECIM(*c); c ++) { unsigned w = ARITH_DVAL(*c); SIMUL_ARITH_SUBTYPE t; if (z.msw > (SIMUL_MSW_MASK / 10) || (z.msw == (SIMUL_MSW_MASK / 10) && /* ARITH_ALPHA is between 1 and 9, inclusive. */ #if ARITH_ALPHA == 5 z.lsw >= SIMUL_TRAPL #else z.lsw > ((SIMUL_TRAPL / 5) * ARITH_ALPHA_A + ((SIMUL_TRAPL % 5) * ARITH_ALPHA_A) / 5) #endif )) ARITH_ERROR(ARITH_EXCEP_CONST_O); z = arith_op_u(plus)(arith_op_u(lsh)(z, 3), arith_op_u(lsh)(z, 1)); t = TLSW(z.lsw + w); if (t < z.lsw) z.msw ++; z.lsw = t; } *ru = z; if (z.msw & SIMUL_TRAP) { *sp = 0; } else { *rs = z; *sp = 1; } return c; #undef ARITH_ALPHA_A #undef ARITH_ALPHA #undef ARITH_ALPHA_TRAP #undef ARITH_ALPHA_MASK } ARITH_DECL_MONO_ST_US(hexconst) { arith_u z = { 0, 0 }; for (; ARITH_HEXAD(*c); c ++) { unsigned w = ARITH_HVAL(*c); if (z.msw > (SIMUL_MSW_MASK / 16)) ARITH_ERROR(ARITH_EXCEP_CONST_O); z = arith_op_u(lsh)(z, 4); z.lsw |= w; } *ru = z; if (z.msw & SIMUL_TRAP) { *sp = 0; } else { *rs = z; *sp = 1; } return c; } #endif #undef ARITH_HVAL #undef ARITH_HEXAD #undef ARITH_DVAL #undef ARITH_DECIM #undef ARITH_OVAL #undef ARITH_OCTAL