#ifndef OPENMM_CUSTOMBONDEDFORCE_H_ #define OPENMM_CUSTOMBONDEDFORCE_H_ /* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "Force.h" #include "Vec3.h" #include #include "internal/windowsExport.h" namespace OpenMM { /** * This class implements bonded interactions between pairs of particles. Unlike HarmonicBondForce, the functional form * of the interaction is completely customizable, and may involve arbitrary algebraic expressions. * It may depend on the distance between particles, as well as on arbitrary global and * per-bond parameters. * * To use this class, create a CustomBondForce object, passing an algebraic expression to the constructor * that defines the interaction energy between each pair of bonded particles. The expression may depend on r, the distance * between the particles, as well as on any parameters you choose. Then call addPerBondParameter() to define per-bond * parameters, and addGlobalParameter() to define global parameters. The values of per-bond parameters are specified as * part of the system definition, while values of global parameters may be modified during a simulation by calling Context::setParameter(). * Finally, call addBond() once for each bond. After a bond has been added, you can modify its parameters by calling setBondParameters(). * This will have no effect on Contexts that already exist unless you call updateParametersInContext(). * * As an example, the following code creates a CustomBondForce that implements a harmonic potential: * * CustomBondForce* force = new CustomBondForce("0.5*k*(r-r0)^2"); * * This force depends on two parameters: the spring constant k and equilibrium distance r0. The following code defines these parameters: * *
 * force->addPerBondParameter("k");
 * force->addPerBondParameter("r0");
 * 
* * This class also has the ability to compute derivatives of the potential energy with respect to global parameters. * Call addEnergyParameterDerivative() to request that the derivative with respect to a particular parameter be * computed. You can then query its value in a Context by calling getState() on it. * * Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following * functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, atan2, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions * are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. * select(x,y,z) = z if x = 0, y otherwise. */ class OPENMM_EXPORT CustomBondForce : public Force { public: /** * Create a CustomBondForce. * * @param energy an algebraic expression giving the interaction energy between two bonded particles as a function * of r, the distance between them */ explicit CustomBondForce(const std::string& energy); /** * Get the number of bonds for which force field parameters have been defined. */ int getNumBonds() const { return bonds.size(); } /** * Get the number of per-bond parameters that the interaction depends on. */ int getNumPerBondParameters() const { return parameters.size(); } /** * Get the number of global parameters that the interaction depends on. */ int getNumGlobalParameters() const { return globalParameters.size(); } /** * Get the number of global parameters with respect to which the derivative of the energy * should be computed. */ int getNumEnergyParameterDerivatives() const { return energyParameterDerivatives.size(); } /** * Get the algebraic expression that gives the interaction energy for each bond */ const std::string& getEnergyFunction() const; /** * Set the algebraic expression that gives the interaction energy for each bond */ void setEnergyFunction(const std::string& energy); /** * Add a new per-bond parameter that the interaction may depend on. * * @param name the name of the parameter * @return the index of the parameter that was added */ int addPerBondParameter(const std::string& name); /** * Get the name of a per-bond parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getPerBondParameterName(int index) const; /** * Set the name of a per-bond parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setPerBondParameterName(int index, const std::string& name); /** * Add a new global parameter that the interaction may depend on. The default value provided to * this method is the initial value of the parameter in newly created Contexts. You can change * the value at any time by calling setParameter() on the Context. * * @param name the name of the parameter * @param defaultValue the default value of the parameter * @return the index of the parameter that was added */ int addGlobalParameter(const std::string& name, double defaultValue); /** * Get the name of a global parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getGlobalParameterName(int index) const; /** * Set the name of a global parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setGlobalParameterName(int index, const std::string& name); /** * Get the default value of a global parameter. * * @param index the index of the parameter for which to get the default value * @return the parameter default value */ double getGlobalParameterDefaultValue(int index) const; /** * Set the default value of a global parameter. * * @param index the index of the parameter for which to set the default value * @param defaultValue the default value of the parameter */ void setGlobalParameterDefaultValue(int index, double defaultValue); /** * Request that this Force compute the derivative of its energy with respect to a global parameter. * The parameter must have already been added with addGlobalParameter(). * * @param name the name of the parameter */ void addEnergyParameterDerivative(const std::string& name); /** * Get the name of a global parameter with respect to which this Force should compute the * derivative of the energy. * * @param index the index of the parameter derivative, between 0 and getNumEnergyParameterDerivatives() * @return the parameter name */ const std::string& getEnergyParameterDerivativeName(int index) const; /** * Add a bond term to the force field. * * @param particle1 the index of the first particle connected by the bond * @param particle2 the index of the second particle connected by the bond * @param parameters the list of parameters for the new bond * @return the index of the bond that was added */ int addBond(int particle1, int particle2, const std::vector& parameters=std::vector()); /** * Get the force field parameters for a bond term. * * @param index the index of the bond for which to get parameters * @param[out] particle1 the index of the first particle connected by the bond * @param[out] particle2 the index of the second particle connected by the bond * @param[out] parameters the list of parameters for the bond */ void getBondParameters(int index, int& particle1, int& particle2, std::vector& parameters) const; /** * Set the force field parameters for a bond term. * * @param index the index of the bond for which to set parameters * @param particle1 the index of the first particle connected by the bond * @param particle2 the index of the second particle connected by the bond * @param parameters the list of parameters for the bond */ void setBondParameters(int index, int particle1, int particle2, const std::vector& parameters=std::vector()); /** * Update the per-bond parameters in a Context to match those stored in this Force object. This method provides * an efficient method to update certain parameters in an existing Context without needing to reinitialize it. * Simply call setBondParameters() to modify this object's parameters, then call updateParametersInContext() * to copy them over to the Context. * * This method has several limitations. The only information it updates is the values of per-bond parameters. * All other aspects of the Force (such as the energy function) are unaffected and can only be changed by reinitializing * the Context. The set of particles involved in a bond cannot be changed, nor can new bonds be added. */ void updateParametersInContext(Context& context); /** * Set whether this force should apply periodic boundary conditions when calculating displacements. * Usually this is not appropriate for bonded forces, but there are situations when it can be useful. */ void setUsesPeriodicBoundaryConditions(bool periodic); /** * Returns whether or not this force makes use of periodic boundary * conditions. * * @returns true if force uses PBC and false otherwise */ bool usesPeriodicBoundaryConditions() const; protected: ForceImpl* createImpl() const; private: class BondInfo; class BondParameterInfo; class GlobalParameterInfo; std::string energyExpression; std::vector parameters; std::vector globalParameters; std::vector bonds; std::vector energyParameterDerivatives; bool usePeriodic; }; /** * This is an internal class used to record information about a bond. * @private */ class CustomBondForce::BondInfo { public: int particle1, particle2; std::vector parameters; BondInfo() : particle1(-1), particle2(-1) { } BondInfo(int particle1, int particle2, const std::vector& parameters) : particle1(particle1), particle2(particle2), parameters(parameters) { } }; /** * This is an internal class used to record information about a per-bond parameter. * @private */ class CustomBondForce::BondParameterInfo { public: std::string name; BondParameterInfo() { } BondParameterInfo(const std::string& name) : name(name) { } }; /** * This is an internal class used to record information about a global parameter. * @private */ class CustomBondForce::GlobalParameterInfo { public: std::string name; double defaultValue; GlobalParameterInfo() { } GlobalParameterInfo(const std::string& name, double defaultValue) : name(name), defaultValue(defaultValue) { } }; } // namespace OpenMM #endif /*OPENMM_CUSTOMBONDEDFORCE_H_*/