#ifndef OPENMM_CUSTOMCVFORCE_H_ #define OPENMM_CUSTOMCVFORCE_H_ /* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2018 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "Force.h" #include "TabulatedFunction.h" #include "internal/windowsExport.h" #include #include namespace OpenMM { /** * This class supports energy functions that depend on collective variables. To use it, * you define a set of collective variables (scalar valued functions that depend on the * particle positions), and an algebraic expression for the energy as a function of the * collective variables. The expression also may involve tabulated functions, and may * depend on arbitrary global parameters. * * Each collective variable is defined by a Force object. The Force's potential energy * is computed, and that becomes the value of the variable. This provides enormous * flexibility in defining collective variables, especially by using custom forces. * Anything that can be computed as a potential function can also be used as a collective * variable. * * To use this class, create a CustomCVForce object, passing an algebraic expression to the * constructor that defines the potential energy. Then call addCollectiveVariable() to define * collective variables and addGlobalParameter() to define global parameters. The values * of global parameters may be modified during a simulation by calling Context::setParameter(). * * This class also has the ability to compute derivatives of the potential energy with respect to global parameters. * Call addEnergyParameterDerivative() to request that the derivative with respect to a particular parameter be * computed. You can then query its value in a Context by calling getState() on it. * * Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following * functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, atan2, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions * are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. * select(x,y,z) = z if x = 0, y otherwise. * * In addition, you can call addTabulatedFunction() to define a new function based on tabulated values. You specify the function by * creating a TabulatedFunction object. That function can then appear in the expression. */ class OPENMM_EXPORT CustomCVForce : public Force { public: /** * Create a CustomCVForce. * * @param energy an algebraic expression giving the energy of the system as a function * of the collective variables and global parameters */ explicit CustomCVForce(const std::string& energy); ~CustomCVForce(); /** * Get the number of collective variables that the interaction depends on. */ int getNumCollectiveVariables() const { return variables.size(); } /** * Get the number of global parameters that the interaction depends on. */ int getNumGlobalParameters() const { return globalParameters.size(); } /** * Get the number of global parameters with respect to which the derivative of the energy * should be computed. */ int getNumEnergyParameterDerivatives() const { return energyParameterDerivatives.size(); } /** * Get the number of tabulated functions that have been defined. */ int getNumTabulatedFunctions() const { return functions.size(); } /** * Get the algebraic expression that gives the energy of the system */ const std::string& getEnergyFunction() const; /** * Set the algebraic expression that gives the energy of the system */ void setEnergyFunction(const std::string& energy); /** * Add a collective variable that the force may depend on. The collective variable * is represented by a Force object, which should have been created on the heap with the * "new" operator. The CustomCVForce takes over ownership of it, and deletes the Force when the * CustomCVForce itself is deleted. * * @param name the name of the collective variable, as it will appear in the energy expression * @param variable the collective variable, represented by a Force object. The value of the * variable is the energy computed by the Force. * @return the index within the Force of the variable that was added */ int addCollectiveVariable(const std::string& name, Force* variable); /** * Get the name of a collective variable. * * @param index the index of the collective variable for which to get the name * @return the variable name */ const std::string& getCollectiveVariableName(int index) const; /** * Get a writable reference to the Force object that computes a collective variable. * * @param index the index of the collective variable to get * @return the Force object */ Force& getCollectiveVariable(int index); /** * Get a const reference to the Force object that computes a collective variable. * * @param index the index of the collective variable to get * @return the Force object */ const Force& getCollectiveVariable(int index) const; /** * Add a new global parameter that the interaction may depend on. The default value provided to * this method is the initial value of the parameter in newly created Contexts. You can change * the value at any time by calling setParameter() on the Context. * * @param name the name of the parameter * @param defaultValue the default value of the parameter * @return the index of the parameter that was added */ int addGlobalParameter(const std::string& name, double defaultValue); /** * Get the name of a global parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getGlobalParameterName(int index) const; /** * Set the name of a global parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setGlobalParameterName(int index, const std::string& name); /** * Get the default value of a global parameter. * * @param index the index of the parameter for which to get the default value * @return the parameter default value */ double getGlobalParameterDefaultValue(int index) const; /** * Set the default value of a global parameter. * * @param index the index of the parameter for which to set the default value * @param defaultValue the default value of the parameter */ void setGlobalParameterDefaultValue(int index, double defaultValue); /** * Request that this Force compute the derivative of its energy with respect to a global parameter. * The parameter must have already been added with addGlobalParameter(). * * @param name the name of the parameter */ void addEnergyParameterDerivative(const std::string& name); /** * Get the name of a global parameter with respect to which this Force should compute the * derivative of the energy. * * @param index the index of the parameter derivative, between 0 and getNumEnergyParameterDerivatives() * @return the parameter name */ const std::string& getEnergyParameterDerivativeName(int index) const; /** * Add a tabulated function that may appear in the energy expression. * * @param name the name of the function as it appears in expressions * @param function a TabulatedFunction object defining the function. The TabulatedFunction * should have been created on the heap with the "new" operator. The * Force takes over ownership of it, and deletes it when the Force itself is deleted. * @return the index of the function that was added */ int addTabulatedFunction(const std::string& name, TabulatedFunction* function); /** * Get a const reference to a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the TabulatedFunction object defining the function */ const TabulatedFunction& getTabulatedFunction(int index) const; /** * Get a reference to a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the TabulatedFunction object defining the function */ TabulatedFunction& getTabulatedFunction(int index); /** * Get the name of a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the name of the function as it appears in expressions */ const std::string& getTabulatedFunctionName(int index) const; /** * Get the current values of the collective variables in a Context. * * @param context the Context for which to get the values * @param[out] values the values of the collective variables are computed and * stored into this */ void getCollectiveVariableValues(Context& context, std::vector& values); /** * Get the inner Context used for evaluating collective variables. * * When you create a Context for a System that contains a CustomCVForce, internally * it creates a new System, adds the Forces that define the CVs to it, creates a new * Context for that System, and uses it to evaluate the variables. In most cases you * can ignore all of this. It is just an implementation detail. However, there are * a few cases where you need to directly access that internal Context. For example, * if you want to modify one of the Forces that defines a collective variable and * call updateParametersInContext() on it, you need to pass that inner Context to it. * This method returns a reference to it. * * @param context the Context containing the CustomCVForce * @return the inner Context used to evaluate the collective variables */ Context& getInnerContext(Context& context); /** * Update the tabulated function parameters in a Context to match those stored in this Force object. This method * provides an efficient method to update certain parameters in an existing Context without needing to reinitialize it. * Simply call getTabulatedFunction(index).setFunctionParameters() to modify this object's parameters, then call * updateParametersInContext() to copy them over to the Context. * * This method is very limited. The only information it updates is the parameters of tabulated functions. * All other aspects of the Force (the energy expression, the set of collective variables, etc.) are unaffected and can * only be changed by reinitializing the Context. */ void updateParametersInContext(Context& context); /** * Returns whether or not this force makes use of periodic boundary * conditions. * * @returns true if force uses PBC and false otherwise */ bool usesPeriodicBoundaryConditions() const; protected: ForceImpl* createImpl() const; private: class GlobalParameterInfo; class VariableInfo; class FunctionInfo; std::string energyExpression; std::vector globalParameters; std::vector variables; std::vector functions; std::vector energyParameterDerivatives; }; /** * This is an internal class used to record information about a global parameter. * @private */ class CustomCVForce::GlobalParameterInfo { public: std::string name; double defaultValue; GlobalParameterInfo() { } GlobalParameterInfo(const std::string& name, double defaultValue) : name(name), defaultValue(defaultValue) { } }; /** * This is an internal class used to record information about a tabulated function. * @private */ class CustomCVForce::VariableInfo { public: std::string name; Force* variable; VariableInfo() { } VariableInfo(const std::string& name, Force* variable) : name(name), variable(variable) { } }; /** * This is an internal class used to record information about a tabulated function. * @private */ class CustomCVForce::FunctionInfo { public: std::string name; TabulatedFunction* function; FunctionInfo() { } FunctionInfo(const std::string& name, TabulatedFunction* function) : name(name), function(function) { } }; } // namespace OpenMM #endif /*OPENMM_CUSTOMCVFORCE_H_*/